Local adaptivity of kernel estimates with plug-in local bandwidth selectors

In non-parametric function estimation selection of a smoothing parameter is one of the most important issues. The performance of smoothing techniques depends highly on the choice of this parameter. Preferably the bandwidth should be determined via a data-driven procedure. In this paper we consider k...

Full description

Saved in:
Bibliographic Details
Main Authors: Gijbels, Irène (Author) , Mammen, Enno (Author)
Format: Article (Journal)
Language:English
Published: 1998
In: Scandinavian journal of statistics
Year: 1998, Volume: 25, Issue: 3, Pages: 503-520
ISSN:1467-9469
DOI:10.1111/1467-9469.00117
Online Access:Verlag, Volltext: http://dx.doi.org/10.1111/1467-9469.00117
Verlag, Volltext: http://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00117/epdf
Verlag, Volltext: http://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00117/abstract
Get full text
Author Notes:I. Gijbels, E. Mammen
Description
Summary:In non-parametric function estimation selection of a smoothing parameter is one of the most important issues. The performance of smoothing techniques depends highly on the choice of this parameter. Preferably the bandwidth should be determined via a data-driven procedure. In this paper we consider kernel estimators in a white noise model, and investigate whether locally adaptive plug-in bandwidths can achieve optimal global rates of convergence. We consider various classes of functions: Sobolev classes, bounded variation function classes, classes of convex functions and classes of monotone functions. We study the situations of pilot estimation with oversmoothing and without oversmoothing. Our main finding is that simple local plug-in bandwidth selectors can adapt to spatial inhomogeneity of the regression function as long as there are no local oscillations of high frequency. We establish the pointwise asymptotic distribution of the regression estimator with local plug-in bandwidth.
Item Description:Issue online: 26 December 2001
Gesehen am 13.02.2018
Physical Description:Online Resource
ISSN:1467-9469
DOI:10.1111/1467-9469.00117