Deep unsupervised similarity learning using partially ordered sets

Unsupervised learning of visual similarities is of paramount importance to computer vision, particularly due to lacking training data for fine-grained similarities. Deep learning of similarities is often based on relationships between pairs or triplets of samples. Many of these relations are unrelia...

Full description

Saved in:
Bibliographic Details
Main Authors: Bautista, Miguel (Author) , Sanakoyeu, Artsiom (Author) , Ommer, Björn (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 09 November 2017
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Year: 2017, Pages: 1923-1932
DOI:10.1109/CVPR.2017.208
Online Access:Verlag, Volltext: http://dx.doi.org/10.1109/CVPR.2017.208
Get full text
Author Notes:Miguel A. Bautista, Artsiom Sanakoyeu, Björn Ommer

MARC

LEADER 00000caa a2200000 c 4500
001 156978292X
003 DE-627
005 20220814071915.0
007 cr uuu---uuuuu
008 180213s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/CVPR.2017.208  |2 doi 
035 |a (DE-627)156978292X 
035 |a (DE-576)499782925 
035 |a (DE-599)BSZ499782925 
035 |a (OCoLC)1340987242 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Bautista, Miguel  |e VerfasserIn  |0 (DE-588)115223787X  |0 (DE-627)1013721810  |0 (DE-576)49975705X  |4 aut 
245 1 0 |a Deep unsupervised similarity learning using partially ordered sets  |c Miguel A. Bautista, Artsiom Sanakoyeu, Björn Ommer 
264 1 |c 09 November 2017 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.02.2018 
520 |a Unsupervised learning of visual similarities is of paramount importance to computer vision, particularly due to lacking training data for fine-grained similarities. Deep learning of similarities is often based on relationships between pairs or triplets of samples. Many of these relations are unreliable and mutually contradicting, implying inconsistencies when trained without supervision information that relates different tuples or triplets to each other. To overcome this problem, we use local estimates of reliable (dis-)similarities to initially group samples into compact surrogate classes and use local partial orders of samples to classes to link classes to each other. Similarity learning is then formulated as a partial ordering task with soft correspondences of all samples to classes. Adopting a strategy of self-supervision, a CNN is trained to optimally represent samples in a mutually consistent manner while updating the classes. The similarity learning and grouping procedure are integrated in a single model and optimized jointly. The proposed unsupervised approach shows competitive performance on detailed pose estimation and object classification. 
650 4 |a CNN 
650 4 |a compact surrogate classes 
650 4 |a Computational modeling 
650 4 |a Computer vision 
650 4 |a deep unsupervised similarity learning 
650 4 |a detailed pose estimation 
650 4 |a fine-grained similarities 
650 4 |a grouping procedure 
650 4 |a image classification 
650 4 |a learning (artificial intelligence) 
650 4 |a local partial orders 
650 4 |a neural nets 
650 4 |a object classification 
650 4 |a partial ordering task 
650 4 |a partially ordered sets 
650 4 |a pose estimation 
650 4 |a similarity learning 
650 4 |a training data 
650 4 |a unsupervised approach 
650 4 |a Visualization 
700 1 |a Sanakoyeu, Artsiom  |e VerfasserIn  |0 (DE-588)1152280767  |0 (DE-627)1013760638  |0 (DE-576)499782712  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |a IEEE Conference on Computer Vision and Pattern Recognition (30. : 2016 : Honolulu, Hawaii)  |t 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)  |d Piscataway, NJ : IEEE, 2017  |g (2017), Seite 1923-1932  |h lvii, 1130 Seiten  |w (DE-627)165921047X  |w (DE-576)499773837  |7 nnam 
773 1 8 |g year:2017  |g pages:1923-1932  |g extent:10  |a Deep unsupervised similarity learning using partially ordered sets 
856 4 0 |u http://dx.doi.org/10.1109/CVPR.2017.208  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20180213 
993 |a ConferencePaper 
994 |a 2017 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 700000  |d 708070  |e 700000PO1034893106  |e 708070PO1034893106  |k 0/700000/  |k 1/700000/708070/  |p 3  |y j 
998 |g 1152280767  |a Sanakoyeu, Artsiom  |m 1152280767:Sanakoyeu, Artsiom  |d 110000  |e 110000PS1152280767  |k 0/110000/  |p 2 
998 |g 115223787X  |a Bautista, Miguel  |m 115223787X:Bautista, Miguel  |d 700000  |d 708070  |e 700000PB115223787X  |e 708070PB115223787X  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN156978292X  |e 2998960251 
BIB |a Y 
JSO |a {"recId":"156978292X","language":["eng"],"note":["Gesehen am 13.02.2018"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"family":"Bautista","given":"Miguel","roleDisplay":"VerfasserIn","display":"Bautista, Miguel","role":"aut"},{"display":"Sanakoyeu, Artsiom","roleDisplay":"VerfasserIn","role":"aut","family":"Sanakoyeu","given":"Artsiom"},{"family":"Ommer","given":"Björn","display":"Ommer, Björn","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Deep unsupervised similarity learning using partially ordered sets","title":"Deep unsupervised similarity learning using partially ordered sets"}],"relHost":[{"disp":"IEEE Conference on Computer Vision and Pattern Recognition (30. : 2016 : Honolulu, Hawaii)2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","note":["Gesehen am 13.02.2018"],"type":{"bibl":"book","media":"Online-Ressource"},"language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","display":"IEEE Conference on Computer Vision and Pattern Recognition (30., 2016, Honolulu, Hawaii)","role":"aut"},{"display":"Institute of Electrical and Electronics Engineers","roleDisplay":"Herausgebendes Organ","role":"isb"}],"recId":"165921047X","part":{"year":"2017","pages":"1923-1932","text":"(2017), Seite 1923-1932","extent":"10"},"titleAlt":[{"title":"CVPR 2017"},{"title":"30th IEEE Conference on Computer Vision and Pattern Recognition"}],"person":[{"display":"O'Conner, Lisa","roleDisplay":"HerausgeberIn","role":"edt","family":"O'Conner","given":"Lisa"}],"title":[{"title_sort":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","subtitle":"proceedings : 21 - 26 July 2016, Honolulu, Hawaii","title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)"}],"physDesc":[{"extent":"lvii, 1130 Seiten"}],"name":{"displayForm":["editorial production by Lisa O’Conner"]},"origin":[{"publisherPlace":"Piscataway, NJ","dateIssuedDisp":"2017","publisher":"IEEE","dateIssuedKey":"2017"}],"id":{"eki":["165921047X"]}}],"physDesc":[{"extent":"10 S."}],"name":{"displayForm":["Miguel A. Bautista, Artsiom Sanakoyeu, Björn Ommer"]},"id":{"doi":["10.1109/CVPR.2017.208"],"eki":["156978292X"]},"origin":[{"dateIssuedDisp":"09 November 2017","dateIssuedKey":"2017"}]} 
SRT |a BAUTISTAMIDEEPUNSUPE0920