Deep semantic feature matching

Estimating dense visual correspondences between objects with intra-class variation, deformations and background clutter remains a challenging problem. Thanks to the breakthrough of CNNs there are new powerful features available. Despite their easy accessibility and great success, existing semantic f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ufer, Nikolai (VerfasserIn) , Ommer, Björn (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 09 November 2017
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Year: 2017, Pages: 5929-5938
DOI:10.1109/CVPR.2017.628
Schlagworte:
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1109/CVPR.2017.628
Volltext
Verfasserangaben:Nikolai Ufer and Björn Ommer
Beschreibung
Zusammenfassung:Estimating dense visual correspondences between objects with intra-class variation, deformations and background clutter remains a challenging problem. Thanks to the breakthrough of CNNs there are new powerful features available. Despite their easy accessibility and great success, existing semantic flow methods could not significantly benefit from these without extensive additional training. We introduce a novel method for semantic matching with pre-trained CNN features which is based on convolutional feature pyramids and activation guided feature selection.
Beschreibung:Gesehen am 13.02.2018
Beschreibung:Online Resource
DOI:10.1109/CVPR.2017.628