Stability of Landau-Ginzburg branes

We evaluate the ideas of Pi-stability at the Landau-Ginzburg point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of "R-stability&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2005
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0412274
Volltext
Verfasserangaben:Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 1569830436
003 DE-627
005 20220814072951.0
007 cr uuu---uuuuu
008 180214s2005 xx |||||o 00| ||eng c
035 |a (DE-627)1569830436 
035 |a (DE-576)499830431 
035 |a (DE-599)BSZ499830431 
035 |a (OCoLC)1340986767 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
245 1 0 |a Stability of Landau-Ginzburg branes  |c Johannes Walcher 
264 1 |c 2005 
300 |a 47 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.02.2020 
520 |a We evaluate the ideas of Pi-stability at the Landau-Ginzburg point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of "R-stability" for matrix factorizations of quasi-homogeneous LG potentials. The D0-brane on the quintic at the Landau-Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli space problem, we then study the action of the gauge group of similarity transformations on matrix factorizations. We define a naive moment map-like flow on the gauge orbits and use it to study boundary flows in several examples. Gauge transformations of non-zero degree play an interesting role for brane-antibrane annihilation. We also give a careful exposition of the grading of the Landau-Ginzburg category of B-branes, and prove an index theorem for matrix factorizations. 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematics - Algebraic Geometry 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2005) Artikel-Nummer 0412274, 47 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Stability of Landau-Ginzburg branes 
773 1 8 |g year:2005  |g extent:47  |a Stability of Landau-Ginzburg branes 
856 4 0 |u http://arxiv.org/abs/hep-th/0412274  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180214 
993 |a Article 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |p 1  |x j  |y j 
999 |a KXP-PPN1569830436  |e 299929297X 
BIB |a Y 
JSO |a {"id":{"eki":["1569830436"]},"origin":[{"dateIssuedKey":"2005","dateIssuedDisp":"2005"}],"name":{"displayForm":["Johannes Walcher"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"recId":"509006531","language":["eng"],"disp":"Stability of Landau-Ginzburg branesArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2005","extent":"47","text":"(2005) Artikel-Nummer 0412274, 47 Seiten"},"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"47 S."}],"title":[{"title":"Stability of Landau-Ginzburg branes","title_sort":"Stability of Landau-Ginzburg branes"}],"person":[{"given":"Johannes","family":"Walcher","role":"aut","roleDisplay":"VerfasserIn","display":"Walcher, Johannes"}],"recId":"1569830436","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 21.02.2020"]} 
SRT |a WALCHERJOHSTABILITYO2005