Non-perturbative RR potentials in the ĉ=1 matrix model

We use the \hat c=1 matrix model to compute the potential energy V(C) for (the zero mode of) the RR scalar in two-dimensional type 0B string theory. The potential is induced by turning on a background RR flux, which in the matrix model corresponds to unequal Fermi levels for the two types of fermion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gross, David (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2003
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0312021
Volltext
Verfasserangaben:David J. Gross and Johannes Walcher
Beschreibung
Zusammenfassung:We use the \hat c=1 matrix model to compute the potential energy V(C) for (the zero mode of) the RR scalar in two-dimensional type 0B string theory. The potential is induced by turning on a background RR flux, which in the matrix model corresponds to unequal Fermi levels for the two types of fermions. Perturbatively, this leads to a linear runaway potential, but non-perturbative effects stabilize the potential, and we find the exact expression V(C)=\frac{1}{2\pi}\int da\arccos [\cos(C)/\sqrt{1+e^{-2\pi a}}]. We also compute the finite-temperature partition function of the 0B theory in the presence of flux. The perturbative expansion is T-dual to the analogous result in type 0A theory, but non-perturbative effects (which depend on C) do not respect naive R\to 1/R duality. The model can also be used to study scattering amplitudes in background RR fluxes.
Beschreibung:Gesehen am 21.02.2020
Beschreibung:Online Resource