Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors

A new variable bandwidth selector for kernel estimation is proposed. The application of this bandwidth selector leads to kernel estimates that achieve optimal rates of convergence over Besov classes. This implies that the procedure adapts to spatially inhomogeneous smoothness. In particular, the est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lepskii, Oleg V. (VerfasserIn) , Mammen, Enno (VerfasserIn) , Spokojnyj, Vladimir G. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1997
In: The annals of statistics
Year: 1997, Jahrgang: 25, Heft: 3, Pages: 929-947
ISSN:2168-8966
DOI:10.1214/aos/1069362731
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1214/aos/1069362731
Verlag, Volltext: https://projecteuclid.org/euclid.aos/1069362731
Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1069362731
Volltext
Verfasserangaben:O.V. Lepski, E. Mammen, V.G. Spokoiny
Beschreibung
Zusammenfassung:A new variable bandwidth selector for kernel estimation is proposed. The application of this bandwidth selector leads to kernel estimates that achieve optimal rates of convergence over Besov classes. This implies that the procedure adapts to spatially inhomogeneous smoothness. In particular, the estimates share optimality properties with wavelet estimates based on thresholding of empirical wavelet coefficients.
Beschreibung:First available in Project Euclid: 20 November 2003
Gesehen am 15.02.2018
Beschreibung:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1069362731