Universality in Quantum Hall systems: coset construction of incompressible states

Incompressible Quantum Hall fluids (QHF's) can be described in the scaling limit by three-dimensional topological field theories. Thanks to the correspondence between three-dimensional topological field theories and two dimensional chiral conformal field theories (CCFT's), we propose to st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fröhlich, Jürg (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2001
In: Journal of statistical physics
Year: 2001, Jahrgang: 103, Heft: 3/4, Pages: 527-567
ISSN:1572-9613
DOI:10.1023/A:1010389232079
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1023/A:1010389232079
Verlag, Volltext: https://link.springer.com/article/10.1023/A:1010389232079
Volltext
Verfasserangaben:Jürg Fröhlich, Bill Pedrini, Christoph Schweigert, and Johannes Walcher
Beschreibung
Zusammenfassung:Incompressible Quantum Hall fluids (QHF's) can be described in the scaling limit by three-dimensional topological field theories. Thanks to the correspondence between three-dimensional topological field theories and two dimensional chiral conformal field theories (CCFT's), we propose to study QHF's from the point of view of CCFT's. We derive consistency conditions and stability criteria for those CCFT's that can be expected to describe a QHF. A general algorithm is presented which uses simple currents to construct interesting examples of such CCFT's. It generalizes the description of QHF's in terms of Quantum Hall lattices. Explicit examples, based on the coset construction, provide candidates for the description of Quantum Hall fluids with Hall conductivity σH=1/2(e2/h), 1/4(e2/h), 3/5(e2/h), (e2/h),... .
Beschreibung:Gesehen am 21.02.2020
Beschreibung:Online Resource
ISSN:1572-9613
DOI:10.1023/A:1010389232079