Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent

For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The St...

Full description

Saved in:
Bibliographic Details
Main Author: Bühring, Wolfgang (Author)
Format: Article (Journal)
Language:English
Published: 26 May 2000
In: Journal of computational and applied mathematics
Year: 2000, Volume: 118, Issue: 1, Pages: 43-69
ISSN:1879-1778
DOI:10.1016/S0377-0427(00)00281-8
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/S0377-0427(00)00281-8
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0377042700002818
Get full text
Author Notes:Wolfgang Bühring, Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany

MARC

LEADER 00000caa a2200000 c 4500
001 1570000239
003 DE-627
005 20220814080109.0
007 cr uuu---uuuuu
008 180220s2000 xx |||||o 00| ||eng c
024 7 |a 10.1016/S0377-0427(00)00281-8  |2 doi 
035 |a (DE-627)1570000239 
035 |a (DE-576)500000239 
035 |a (DE-599)BSZ500000239 
035 |a (OCoLC)1340988954 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Bühring, Wolfgang  |e VerfasserIn  |0 (DE-588)1153024896  |0 (DE-627)1014395208  |0 (DE-576)500006210  |4 aut 
245 1 0 |a Second-order linear differential equations with two irregular singular points of rank three  |b the characteristic exponent  |c Wolfgang Bühring, Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany 
264 1 |c 26 May 2000 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.02.2018 
520 |a For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formulas as well as more detailed asymptotic expansions are available. Here certain new, recursively known coefficients enter, which are closely related to but different from the coefficients of the formal solutions at one of the irregular singular points of the differential equation. The coefficients of the formal solutions then appear as finite sums over subsets of the new coefficients. As a by-product, the leading exponential terms of the asymptotic behaviour of the late coefficients of the formal solutions are given, and this is a concrete example of the structural results obtained by Immink in a more general setting. The formulas displayed in this paper are not of merely theoretical interest, but they also are complete in the sense that they could be (and have been) implemented for computing accurate numerical values of the characteristic exponent, although the computational load is not small and increases with the rank of the singular point under consideration. 
650 4 |a Characteristic exponent 
650 4 |a Irregular singular point 
650 4 |a Stokes multiplier 
773 0 8 |i Enthalten in  |t Journal of computational and applied mathematics  |d Amsterdam : Elsevier, 1975  |g 118(2000), 1, Seite 43-69  |h Online-Ressource  |w (DE-627)266889204  |w (DE-600)1468806-2  |w (DE-576)075962373  |x 1879-1778  |7 nnas  |a Second-order linear differential equations with two irregular singular points of rank three the characteristic exponent 
773 1 8 |g volume:118  |g year:2000  |g number:1  |g pages:43-69  |g extent:27  |a Second-order linear differential equations with two irregular singular points of rank three the characteristic exponent 
856 4 0 |u http://dx.doi.org/10.1016/S0377-0427(00)00281-8  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0377042700002818  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180220 
993 |a Article 
994 |a 2000 
998 |g 1153024896  |a Bühring, Wolfgang  |m 1153024896:Bühring, Wolfgang  |d 130000  |d 130200  |e 130000PB1153024896  |e 130200PB1153024896  |k 0/130000/  |k 1/130000/130200/  |p 1  |x j  |y j 
999 |a KXP-PPN1570000239  |e 3000071962 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Wolfgang Bühring, Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany"]},"id":{"eki":["1570000239"],"doi":["10.1016/S0377-0427(00)00281-8"]},"origin":[{"dateIssuedDisp":"26 May 2000","dateIssuedKey":"2000"}],"relHost":[{"title":[{"title_sort":"Journal of computational and applied mathematics","title":"Journal of computational and applied mathematics"}],"part":{"pages":"43-69","issue":"1","year":"2000","extent":"27","volume":"118","text":"118(2000), 1, Seite 43-69"},"pubHistory":["1.1975 -"],"language":["eng"],"recId":"266889204","note":["Gesehen am 04.06.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Second-order linear differential equations with two irregular singular points of rank three the characteristic exponentJournal of computational and applied mathematics","id":{"issn":["1879-1778"],"zdb":["1468806-2"],"eki":["266889204"]},"origin":[{"dateIssuedDisp":"1975-","dateIssuedKey":"1975","publisher":"Elsevier ; North-Holland","publisherPlace":"Amsterdam ; Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"27 S."}],"person":[{"role":"aut","display":"Bühring, Wolfgang","roleDisplay":"VerfasserIn","given":"Wolfgang","family":"Bühring"}],"title":[{"title":"Second-order linear differential equations with two irregular singular points of rank three","subtitle":"the characteristic exponent","title_sort":"Second-order linear differential equations with two irregular singular points of rank three"}],"language":["eng"],"recId":"1570000239","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 20.02.2018"]} 
SRT |a BUEHRINGWOSECONDORDE2620