Empirical process of residuals for high-dimensional linear models

We give a stochastic expansion for the empirical distribution function F^nF^n\hat{F}_n of residuals in a p-dimensional linear model. This expansion holds for p increasing with n. It shows that, for high-dimensional linear models, F^nF^n\hat{F}_n strongly depends on the chosen estimator θ^θ^\hat{\the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mammen, Enno (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1996
In: The annals of statistics
Year: 1996, Jahrgang: 24, Heft: 1, Pages: 307-335$19
ISSN:2168-8966
DOI:10.1214/aos/1033066211
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1214/aos/1033066211
Verlag, Volltext: https://projecteuclid.org/euclid.aos/1033066211
Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1033066211
Volltext
Verfasserangaben:Enno Mammen
Beschreibung
Zusammenfassung:We give a stochastic expansion for the empirical distribution function F^nF^n\hat{F}_n of residuals in a p-dimensional linear model. This expansion holds for p increasing with n. It shows that, for high-dimensional linear models, F^nF^n\hat{F}_n strongly depends on the chosen estimator θ^θ^\hat{\theta} of the parameter θθ\theta of the linear model. In particular, if one uses an ML-estimator θ^MLθ^ML\hat{\theta}_{ML} which is ML motivated by a wrongly specified error distribution function G, then F^nF^n\hat{F}_n is biased toward G. For p^2 / n \to \infty$, this bias effect is of larger order than the stochastic fluctuations of the empirical process. Hence, the statistical analysis may just reproduce the assumptions imposed.
Beschreibung:First available in Project Euclid: 26 September 2002
Gesehen am 22.02.2018
Beschreibung:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1033066211