Finite nonabelian p-groups of exponent >p with a small number of maximal Abelian subgroups of exponent >p

Y. Berkovich has proposed to classify nonabelian finite p-groups G of exponent >p which have exactly p maximal abelian subgroups of exponent >p and this was done here in Theorem 1 for p=2 and in Theorem 2 for p>2. The next critical case, where G has exactly p+1 maximal abelian subgroups of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Janko, Zvonimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 2017
In: Glasnik matematički
Year: 2017, Jahrgang: 52, Heft: 1, Pages: 99-105
ISSN:1846-7989
DOI:10.3336/gm.52.1.07
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.3336/gm.52.1.07
Verlag, Volltext: https://hrcak.srce.hr/183125
Volltext
Verfasserangaben:Zvonimir Janko
Beschreibung
Zusammenfassung:Y. Berkovich has proposed to classify nonabelian finite p-groups G of exponent >p which have exactly p maximal abelian subgroups of exponent >p and this was done here in Theorem 1 for p=2 and in Theorem 2 for p>2. The next critical case, where G has exactly p+1 maximal abelian subgroups of exponent >p was done only for the case p=2 in Theorem 3.
Beschreibung:Gesehen am 22.02.2018
Beschreibung:Online Resource
ISSN:1846-7989
DOI:10.3336/gm.52.1.07