Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian
We determine up to isomorphism finite non-Dedekindian p-groups G (i.e., p-groups which possess non-normal subgroups) such that the normal closure of each non-normal cyclic subgroup in G is nonabelian.It turns out that we must have p=2 and G has an abelian maximal subgroup A of exponent 2e, e≥ 3, and...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
December 2014
|
| In: |
Glasnik matematički
Year: 2014, Jahrgang: 49, Heft: 2, Pages: 333-336 |
| ISSN: | 1846-7989 |
| DOI: | 10.3336/gm.49.2.07 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.3336/gm.49.2.07 Verlag, Volltext: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=193363 |
| Verfasserangaben: | Zvonimir Janko |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1570117489 | ||
| 003 | DE-627 | ||
| 005 | 20220814081520.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180222s2014 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3336/gm.49.2.07 |2 doi | |
| 035 | |a (DE-627)1570117489 | ||
| 035 | |a (DE-576)500117489 | ||
| 035 | |a (DE-599)BSZ500117489 | ||
| 035 | |a (OCoLC)1340992229 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Janko, Zvonimir |d 1932- |e VerfasserIn |0 (DE-588)137026056 |0 (DE-627)622563041 |0 (DE-576)320900258 |4 aut | |
| 245 | 1 | 0 | |a Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian |c Zvonimir Janko |
| 264 | 1 | |c December 2014 | |
| 300 | |a 4 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 22.02.2018 | ||
| 520 | |a We determine up to isomorphism finite non-Dedekindian p-groups G (i.e., p-groups which possess non-normal subgroups) such that the normal closure of each non-normal cyclic subgroup in G is nonabelian.It turns out that we must have p=2 and G has an abelian maximal subgroup A of exponent 2e, e≥ 3, and an element v G-A such that for all h A we have either hv=h-1 or hv=h -1+2e-1. | ||
| 773 | 0 | 8 | |i Enthalten in |t Glasnik matematički |d Zagreb : Društvo, 1966 |g 49(2014), 2, Seite 333-336 |h Online-Ressource |w (DE-627)603487432 |w (DE-600)2501667-2 |w (DE-576)308091590 |x 1846-7989 |7 nnas |a Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian |
| 773 | 1 | 8 | |g volume:49 |g year:2014 |g number:2 |g pages:333-336 |g extent:4 |a Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian |
| 856 | 4 | 0 | |u http://dx.doi.org/10.3336/gm.49.2.07 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=193363 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180222 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 137026056 |a Janko, Zvonimir |m 137026056:Janko, Zvonimir |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PJ137026056 |e 110100PJ137026056 |e 110000PJ137026056 |e 110400PJ137026056 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1570117489 |e 3000385592 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian","title":"Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelian"}],"person":[{"given":"Zvonimir","family":"Janko","role":"aut","roleDisplay":"VerfasserIn","display":"Janko, Zvonimir"}],"note":["Gesehen am 22.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1570117489","origin":[{"dateIssuedDisp":"December 2014","dateIssuedKey":"2014"}],"id":{"doi":["10.3336/gm.49.2.07"],"eki":["1570117489"]},"name":{"displayForm":["Zvonimir Janko"]},"physDesc":[{"extent":"4 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Zagreb","dateIssuedDisp":"1966-","dateIssuedKey":"1966","publisher":"Društvo"}],"id":{"eki":["603487432"],"zdb":["2501667-2"],"issn":["1846-7989"]},"name":{"displayForm":["Hrvatsko Matematičko Društvo"]},"pubHistory":["1.1966 -"],"part":{"volume":"49","text":"49(2014), 2, Seite 333-336","extent":"4","year":"2014","issue":"2","pages":"333-336"},"titleAlt":[{"title":"Mathematische Zeitschrift"}],"note":["Gesehen am 17.01.25"],"disp":"Finite p-groups in which the normal closure of each non-normal cyclic subgroup is nonabelianGlasnik matematički","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"603487432","corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Hrvatsko Matematičko Društvo","role":"isb"}],"language":["eng"],"title":[{"title_sort":"Glasnik matematički","title":"Glasnik matematički"}]}]} | ||
| SRT | |a JANKOZVONIFINITEPGRO2014 | ||