Finite p-groups with many minimal nonabelian subgroups

In Theorem 2.1 we characterize finite p-groups G such that each nonabelian subgroup H of G which possesses an abelian maximal subgroup is minimal nonabelian. In Theorem 3.1 the problem 2331 of Y. Berkovich (stated in Y. Berkovich and Z. Janko, in preparation [4]) about finite p-groups with “many” mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Janko, Zvonimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 March 2012
In: Journal of algebra
Year: 2012, Jahrgang: 357, Pages: 263-270
ISSN:1090-266X
DOI:10.1016/j.jalgebra.2012.02.014
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.jalgebra.2012.02.014
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S002186931200110X
Volltext
Verfasserangaben:Zvonimir Janko
Beschreibung
Zusammenfassung:In Theorem 2.1 we characterize finite p-groups G such that each nonabelian subgroup H of G which possesses an abelian maximal subgroup is minimal nonabelian. In Theorem 3.1 the problem 2331 of Y. Berkovich (stated in Y. Berkovich and Z. Janko, in preparation [4]) about finite p-groups with “many” minimal nonabelian subgroups is solved.
Beschreibung:Gesehen am 23.02.2018
Beschreibung:Online Resource
ISSN:1090-266X
DOI:10.1016/j.jalgebra.2012.02.014