Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group

We characterize the title p-groups for all primes p.

Saved in:
Bibliographic Details
Main Author: Janko, Zvonimir (Author)
Format: Article (Journal)
Language:English
Published: 03 January 2013
In: Israel journal of mathematics
Year: 2013, Volume: 197, Issue: 1, Pages: 1-22
ISSN:1565-8511
DOI:10.1007/s11856-012-0174-1
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s11856-012-0174-1
Verlag, Volltext: https://link.springer.com/article/10.1007/s11856-012-0174-1
Get full text
Author Notes:Zvonimir Janko

MARC

LEADER 00000caa a2200000 c 4500
001 1570149607
003 DE-627
005 20230727075834.0
007 cr uuu---uuuuu
008 180223s2013 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11856-012-0174-1  |2 doi 
035 |a (DE-627)1570149607 
035 |a (DE-576)500149607 
035 |a (DE-599)BSZ500149607 
035 |a (OCoLC)1340992140 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Janko, Zvonimir  |d 1932-  |e VerfasserIn  |0 (DE-588)137026056  |0 (DE-627)622563041  |0 (DE-576)320900258  |4 aut 
245 1 0 |a Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group  |c Zvonimir Janko 
246 3 0 |a Schnittmenge geschnitten mit ungleich Menge eins nonequal 
246 3 3 |a Finite p-groups all of whose cyclic subgroups A, B with A intersection B unequal {one} generate an abelian group 
264 1 |c 03 January 2013 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.02.2018 
520 |a We characterize the title p-groups for all primes p. 
773 0 8 |i Enthalten in  |t Israel journal of mathematics  |d Berlin : Springer, 1963  |g 197(2013), 1, Seite 1-22  |h Online-Ressource  |w (DE-627)32654528X  |w (DE-600)2042388-3  |w (DE-576)264949811  |x 1565-8511  |7 nnas  |a Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group 
773 1 8 |g volume:197  |g year:2013  |g number:1  |g pages:1-22  |g extent:22  |a Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group 
856 4 0 |u http://dx.doi.org/10.1007/s11856-012-0174-1  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s11856-012-0174-1  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180223 
993 |a Article 
994 |a 2013 
998 |g 137026056  |a Janko, Zvonimir  |m 137026056:Janko, Zvonimir  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PJ137026056  |e 110100PJ137026056  |e 110000PJ137026056  |e 110400PJ137026056  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1570149607  |e 300043612X 
BIB |a Y 
SER |a journal 
JSO |a {"titleAlt":[{"title":"Finite p-groups all of whose cyclic subgroups A, B with A intersection B unequal {one} generate an abelian group"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 23.02.2018"],"recId":"1570149607","language":["eng"],"title":[{"title":"Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group","title_sort":"Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian group"}],"person":[{"family":"Janko","given":"Zvonimir","roleDisplay":"VerfasserIn","display":"Janko, Zvonimir","role":"aut"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"id":{"issn":["1565-8511"],"zdb":["2042388-3"],"eki":["32654528X"]},"origin":[{"dateIssuedDisp":"1963-","dateIssuedKey":"1963","publisher":"Springer ; The Magnes Press","publisherPlace":"Berlin ; Heidelberg ; Jerusalem"}],"name":{"displayForm":["The Hebrew University"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Israel journal of mathematics","title_sort":"Israel journal of mathematics"}],"part":{"extent":"22","text":"197(2013), 1, Seite 1-22","volume":"197","pages":"1-22","issue":"1","year":"2013"},"pubHistory":["1.1963 -"],"language":["eng"],"corporate":[{"role":"isb","display":"ha-Universịtah ha-ʿIvrit bi-Yerushalayim","roleDisplay":"Herausgebendes Organ"}],"recId":"32654528X","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Finite p-groups all of whose cyclic subgroups A, B with A ∩ B ≠ {1} generate an abelian groupIsrael journal of mathematics","note":["Gesehen am 03.01.08"]}],"origin":[{"dateIssuedDisp":"03 January 2013","dateIssuedKey":"2013"}],"id":{"doi":["10.1007/s11856-012-0174-1"],"eki":["1570149607"]},"name":{"displayForm":["Zvonimir Janko"]}} 
SRT |a JANKOZVONIFINITEPGRO0320