Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups
Let G be a finite p-group which has exactly one maximal subgroup H such that its derived subgroup H' is noncyclic. Then we must have p = 2, G′ is abelian of rank 2, |G′ : H′| = 2 and d(G) = 2 or 3 (Theorems 6 and 8). This solves the problem No. 2248 stated by Berkovich in [Groups of Prime Power...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
February 2015
|
| In: |
Journal of algebra and its applications
Year: 2015, Jahrgang: 14, Heft: 01 |
| ISSN: | 0219-4988 |
| DOI: | 10.1142/S0219498814500807 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1142/S0219498814500807 Verlag, Volltext: http://www.worldscientific.com/doi/abs/10.1142/S0219498814500807 |
| Verfasserangaben: | Zvonimir Janko |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1570202400 | ||
| 003 | DE-627 | ||
| 005 | 20220814082641.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180226s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S0219498814500807 |2 doi | |
| 035 | |a (DE-627)1570202400 | ||
| 035 | |a (DE-576)500202400 | ||
| 035 | |a (DE-599)BSZ500202400 | ||
| 035 | |a (OCoLC)1340992706 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Janko, Zvonimir |d 1932- |e VerfasserIn |0 (DE-588)137026056 |0 (DE-627)622563041 |0 (DE-576)320900258 |4 aut | |
| 245 | 1 | 0 | |a Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups |c Zvonimir Janko |
| 264 | 1 | |c February 2015 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 9 September 2014 | ||
| 500 | |a Gesehen am 26.02.2018 | ||
| 520 | |a Let G be a finite p-group which has exactly one maximal subgroup H such that its derived subgroup H' is noncyclic. Then we must have p = 2, G′ is abelian of rank 2, |G′ : H′| = 2 and d(G) = 2 or 3 (Theorems 6 and 8). This solves the problem No. 2248 stated by Berkovich in [Groups of Prime Power Order, Vol. 3 (Walter de Gruyter, Berlin, 2011)]. | ||
| 773 | 0 | 8 | |i Enthalten in |t Journal of algebra and its applications |d Singapore [u.a.] : World Scientific Publ., 2002 |g 14(2015,1) Artikel-Nummer 1450080, 8 Seiten |h Online-Ressource |w (DE-627)357713095 |w (DE-600)2095971-0 |w (DE-576)273886614 |x 0219-4988 |7 nnas |a Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups |
| 773 | 1 | 8 | |g volume:14 |g year:2015 |g number:01 |g extent:8 |a Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1142/S0219498814500807 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.worldscientific.com/doi/abs/10.1142/S0219498814500807 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180226 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 137026056 |a Janko, Zvonimir |m 137026056:Janko, Zvonimir |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PJ137026056 |e 110100PJ137026056 |e 110000PJ137026056 |e 110400PJ137026056 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1570202400 |e 3001008911 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2095971-0"],"eki":["357713095"],"issn":["0219-4988"]},"origin":[{"publisherPlace":"Singapore [u.a.]","dateIssuedKey":"2002","publisher":"World Scientific Publ.","dateIssuedDisp":"2002-"}],"titleAlt":[{"title":"JAA"}],"part":{"year":"2015","issue":"01","text":"14(2015,1) Artikel-Nummer 1450080, 8 Seiten","volume":"14","extent":"8"},"pubHistory":["1.2002 -"],"language":["eng"],"recId":"357713095","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroupsJournal of algebra and its applications","title":[{"subtitle":"JAA","title":"Journal of algebra and its applications","title_sort":"Journal of algebra and its applications"}]}],"physDesc":[{"extent":"8 S."}],"id":{"doi":["10.1142/S0219498814500807"],"eki":["1570202400"]},"origin":[{"dateIssuedDisp":"February 2015","dateIssuedKey":"2015"}],"name":{"displayForm":["Zvonimir Janko"]},"language":["eng"],"recId":"1570202400","note":["Published online: 9 September 2014","Gesehen am 26.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups","title_sort":"Finite p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups"}],"person":[{"roleDisplay":"VerfasserIn","display":"Janko, Zvonimir","role":"aut","family":"Janko","given":"Zvonimir"}]} | ||
| SRT | |a JANKOZVONIFINITEPGRO2015 | ||