Maximal representations of complex hyperbolic lattices into SU(m,n)
Let Γ denote a lattice in SU(1, p), with p greater than 1. We show that there exists no Zariski dense maximal representation with target SU(m, n) if n > m > 1. The proof is geometric and is based on the study of the rigidity properties of the geometry whose points are isotropic m-subspaces of...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 July 2015
|
| In: |
Geometric and functional analysis
Year: 2015, Jahrgang: 25, Heft: 4, Pages: 1290-1332 |
| ISSN: | 1420-8970 |
| DOI: | 10.1007/s00039-015-0338-3 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00039-015-0338-3 Verlag, Volltext: https://link.springer.com/article/10.1007/s00039-015-0338-3 |
| Verfasserangaben: | Maria Beatrice Pozzetti |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1570370176 | ||
| 003 | DE-627 | ||
| 005 | 20220814084126.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180302s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00039-015-0338-3 |2 doi | |
| 035 | |a (DE-627)1570370176 | ||
| 035 | |a (DE-576)500370176 | ||
| 035 | |a (DE-599)BSZ500370176 | ||
| 035 | |a (OCoLC)1340992873 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Pozzetti, Maria Beatrice |d 1987- |e VerfasserIn |0 (DE-588)1138212202 |0 (DE-627)895519631 |0 (DE-576)492391424 |4 aut | |
| 245 | 1 | 0 | |a Maximal representations of complex hyperbolic lattices into SU(m,n) |c Maria Beatrice Pozzetti |
| 264 | 1 | |c 14 July 2015 | |
| 300 | |a 43 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 02.03.2017 | ||
| 520 | |a Let Γ denote a lattice in SU(1, p), with p greater than 1. We show that there exists no Zariski dense maximal representation with target SU(m, n) if n > m > 1. The proof is geometric and is based on the study of the rigidity properties of the geometry whose points are isotropic m-subspaces of a complex vector space V endowed with a Hermitian metric h of signature (m, n) and whose lines correspond to the 2m dimensional subspaces of V on which the restriction of h has signature (m, m). | ||
| 773 | 0 | 8 | |i Enthalten in |t Geometric and functional analysis |d Cham (ZG) : Springer International Publishing AG, 1991 |g 25(2015), 4, Seite 1290-1332 |h Online-Ressource |w (DE-627)25372368X |w (DE-600)1459155-8 |w (DE-576)072372915 |x 1420-8970 |7 nnas |a Maximal representations of complex hyperbolic lattices into SU(m,n) |
| 773 | 1 | 8 | |g volume:25 |g year:2015 |g number:4 |g pages:1290-1332 |g extent:43 |a Maximal representations of complex hyperbolic lattices into SU(m,n) |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00039-015-0338-3 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00039-015-0338-3 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180302 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 1138212202 |a Pozzetti, Maria Beatrice |m 1138212202:Pozzetti, Maria Beatrice |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1570370176 |e 3001415916 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1570370176","person":[{"given":"Maria Beatrice","roleDisplay":"VerfasserIn","display":"Pozzetti, Maria Beatrice","family":"Pozzetti","role":"aut"}],"language":["eng"],"id":{"eki":["1570370176"],"doi":["10.1007/s00039-015-0338-3"]},"physDesc":[{"extent":"43 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 01.12.05"],"pubHistory":["1.1991 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisherPlace":"Cham (ZG) ; Basel ; Berlin ; Heidelberg","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"title":[{"subtitle":"GAFA","title":"Geometric and functional analysis","title_sort":"Geometric and functional analysis"}],"part":{"pages":"1290-1332","issue":"4","text":"25(2015), 4, Seite 1290-1332","extent":"43","year":"2015","volume":"25"},"titleAlt":[{"title":"GAFA"}],"recId":"25372368X","language":["eng"],"disp":"Maximal representations of complex hyperbolic lattices into SU(m,n)Geometric and functional analysis","id":{"zdb":["1459155-8"],"issn":["1420-8970"],"eki":["25372368X"]}}],"note":["Gesehen am 02.03.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"14 July 2015","dateIssuedKey":"2015"}],"title":[{"title_sort":"Maximal representations of complex hyperbolic lattices into SU(m,n)","title":"Maximal representations of complex hyperbolic lattices into SU(m,n)"}],"name":{"displayForm":["Maria Beatrice Pozzetti"]}} | ||
| SRT | |a POZZETTIMAMAXIMALREP1420 | ||