Nonperturbative dynamical many-body theory of a Bose-Einstein condensate

A dynamical many-body theory is presented which systematically extends beyond mean-field and perturbative quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-degenerate atomic gases. The nonperturbative approximation scheme is based on a systemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gasenzer, Thomas (VerfasserIn) , Berges, Jürgen (VerfasserIn) , Schmidt, Michael G. (VerfasserIn) , Seco, Marcos (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5 December 2005
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2005, Jahrgang: 72, Heft: 6
ISSN:1094-1622
DOI:10.1103/PhysRevA.72.063604
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevA.72.063604
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.72.063604
Volltext
Verfasserangaben:Thomas Gasenzer, Jürgen Berges, Michael G. Schmidt, and Marcos Seco
Beschreibung
Zusammenfassung:A dynamical many-body theory is presented which systematically extends beyond mean-field and perturbative quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-degenerate atomic gases. The nonperturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory, and “off-shell” effects that are not captured by the Gross-Pitaevskii equation. This is relevant to account for the dynamics of, e.g., strongly interacting quantum gases atoms near a scattering resonance, or of one-dimensional Bose gases in the Tonks-Girardeau regime. We apply the theory to a homogeneous ultracold Bose gas in one spatial dimension. Considering the time evolution of an initial state far from equilibrium we show that it quickly evolves to a nonequilibrium quasistationary state and discuss the possibility to attribute an effective temperature to it. The approach to thermal equilibrium is found to be extremely slow.
Beschreibung:Gesehen am 10.12.2019
Beschreibung:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.72.063604