Nonperturbative dynamical many-body theory of a Bose-Einstein condensate

A dynamical many-body theory is presented which systematically extends beyond mean-field and perturbative quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-degenerate atomic gases. The non-perturbative approximation scheme is based on a systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gasenzer, Thomas (VerfasserIn) , Berges, Jürgen (VerfasserIn) , Schmidt, Michael G. (VerfasserIn) , Seco, Marcos (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2005
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/cond-mat/0507480
Volltext
Verfasserangaben:Thomas Gasenzer, Juergen Berges, Michael G. Schmidt, and Marcos Seco, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
Beschreibung
Zusammenfassung:A dynamical many-body theory is presented which systematically extends beyond mean-field and perturbative quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-degenerate atomic gases. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and ``off-shell'' effects that are not captured by the Gross-Pitaevskii equation. This is relevant to account for the dynamics of, e.g., strongly interacting quantum gases atoms near a scattering resonance, or of one-dimensional Bose gases in the Tonks-Girardeau regime. We apply the theory to a homogeneous ultracold Bose gas in one spatial dimension. Considering the time evolution of an initial state far from equilibrium we show that it quickly evolves to a non-equilibrium quasistationary state and discuss the possibility to attribute an effective temperature to it. The approach to thermal equilibrium is found to be extremely slow.
Beschreibung:Gesehen am 06.03.2018
Beschreibung:Online Resource