A two-step algorithm for learning from unspecific reinforcement

We study a simple learning model based on the Hebb rule to cope with `delayed', unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non-universal way on le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kühn, Reimer (VerfasserIn) , Stamatescu, Ion-Olimpiu (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1999
In: Journal of physics. A, Mathematical and theoretical
Year: 1999, Jahrgang: 32, Heft: 31
ISSN:1751-8121
DOI:10.1088/0305-4470/32/31/301
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/0305-4470/32/31/301
Verlag, Volltext: http://stacks.iop.org/0305-4470/32/i=31/a=301
Volltext
Verfasserangaben:Reimer Kühn and Ion-Olimpiu Stamatescu

MARC

LEADER 00000caa a2200000 c 4500
001 1570439516
003 DE-627
005 20220814085009.0
007 cr uuu---uuuuu
008 180306s1999 xx |||||o 00| ||eng c
024 7 |a 10.1088/0305-4470/32/31/301  |2 doi 
035 |a (DE-627)1570439516 
035 |a (DE-576)500439516 
035 |a (DE-599)BSZ500439516 
035 |a (OCoLC)1340994000 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Kühn, Reimer  |e VerfasserIn  |0 (DE-588)114014605X  |0 (DE-627)898267560  |0 (DE-576)493682457  |4 aut 
245 1 2 |a A two-step algorithm for learning from unspecific reinforcement  |c Reimer Kühn and Ion-Olimpiu Stamatescu 
264 1 |c 1999 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.03.2018 
520 |a We study a simple learning model based on the Hebb rule to cope with `delayed', unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non-universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Morever, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization. 
700 1 |a Stamatescu, Ion-Olimpiu  |d 1941-  |e VerfasserIn  |0 (DE-588)1054303746  |0 (DE-627)791271358  |0 (DE-576)176705139  |4 aut 
773 0 8 |i Enthalten in  |t Journal of physics. A, Mathematical and theoretical  |d Bristol : IOP Publ., 2007  |g 32(1999,31) Artikel-Nummer 5749, 13 Seiten  |h Online-Ressource  |w (DE-627)225409631  |w (DE-600)1363010-6  |w (DE-576)077608011  |x 1751-8121  |7 nnas  |a A two-step algorithm for learning from unspecific reinforcement 
773 1 8 |g volume:32  |g year:1999  |g number:31  |g extent:13  |a A two-step algorithm for learning from unspecific reinforcement 
856 4 0 |u http://dx.doi.org/10.1088/0305-4470/32/31/301  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://stacks.iop.org/0305-4470/32/i=31/a=301  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180306 
993 |a Article 
994 |a 1999 
998 |g 1054303746  |a Stamatescu, Ion-Olimpiu  |m 1054303746:Stamatescu, Ion-Olimpiu  |d 130000  |d 130300  |e 130000PS1054303746  |e 130300PS1054303746  |k 0/130000/  |k 1/130000/130300/  |p 2  |y j 
998 |g 114014605X  |a Kühn, Reimer  |m 114014605X:Kühn, Reimer  |d 130000  |d 130300  |e 130000PK114014605X  |e 130300PK114014605X  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1570439516  |e 3001712384 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"display":"Kühn, Reimer","family":"Kühn","role":"aut","given":"Reimer"},{"role":"aut","given":"Ion-Olimpiu","display":"Stamatescu, Ion-Olimpiu","family":"Stamatescu"}],"id":{"doi":["10.1088/0305-4470/32/31/301"],"eki":["1570439516"]},"name":{"displayForm":["Reimer Kühn and Ion-Olimpiu Stamatescu"]},"physDesc":[{"extent":"13 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"A two-step algorithm for learning from unspecific reinforcementJournal of physics. A, Mathematical and theoretical","title":[{"title_sort":"Journal of physics","partname":"Mathematical and theoretical","subtitle":"concerned with the fundamental mathematical and computational methods underpinning physics, the journal is particularly relevant to statistical physics, chaotic and complex systems, classical and quantum mechanics and classical and quantum field theory","title":"Journal of physics"}],"pubHistory":["40.2007 -"],"note":["Gesehen am 29.06.2022"],"origin":[{"publisherPlace":"Bristol","dateIssuedDisp":"2007-","publisher":"IOP Publ.","dateIssuedKey":"2007"}],"id":{"eki":["225409631"],"zdb":["1363010-6"],"issn":["1751-8121"],"doi":["10.1088/issn.1751-8121"]},"recId":"225409631","physDesc":[{"extent":"Online-Ressource"}],"part":{"year":"1999","volume":"32","extent":"13","text":"32(1999,31) Artikel-Nummer 5749, 13 Seiten","issue":"31"},"titleAlt":[{"title":"Journal of physics / A"}],"language":["eng"]}],"recId":"1570439516","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 06.03.2018"],"origin":[{"dateIssuedKey":"1999","dateIssuedDisp":"1999"}],"title":[{"title_sort":"two-step algorithm for learning from unspecific reinforcement","title":"A two-step algorithm for learning from unspecific reinforcement"}]} 
SRT |a KUEHNREIMETWOSTEPALG1999