Persistence of exponential decay and spectral gaps for interacting fermions

We consider systems of weakly interacting fermions on a lattice. The corresponding free fermionic system is assumed to have a ground state separated by a gap from the rest of the spectrum. We prove that, if both the interaction and the free Hamiltonian are sums of sufficiently rapidly decaying terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Roeck, Wojciech (VerfasserIn) , Salmhofer, Manfred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1712.00977
Volltext
Verfasserangaben:Wojciech de Roeck & M. Salmhofer
Beschreibung
Zusammenfassung:We consider systems of weakly interacting fermions on a lattice. The corresponding free fermionic system is assumed to have a ground state separated by a gap from the rest of the spectrum. We prove that, if both the interaction and the free Hamiltonian are sums of sufficiently rapidly decaying terms, and if the interaction is sufficiently weak, then the interacting system has a spectral gap as well, uniformly in the lattice size. Our approach relies on convergent fermionic perturbation theory, thus providing an alternative method to the one used recently in [MB Hastings. arXiv:1706.02270], and extending the result to include non-selfadjoint interaction terms.
Beschreibung:Identifizierung der Ressource nach: Last revised 26 Apr 2018
Gesehen am 27.11.2020
Beschreibung:Online Resource