A geometric approach to image labeling

We introduce a smooth non-convex approach in a novel geometric framework which complements established convex and non-convex approaches to image labeling. The major underlying concept is a smooth manifold of probabilistic assignments of a prespecified set of prior data (the “labels”) to given image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Åström, Freddie (VerfasserIn) , Petra, Stefania (VerfasserIn) , Schmitzer, Bernhard (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 16 September 2016
In: Computer Vision – ECCV 2016
Year: 2016, Pages: 139-154
DOI:10.1007/978-3-319-46454-1_9
Schlagworte:
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-46454-1_9
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-46454-1_9
Volltext
Verfasserangaben:Freddie Åström, Stefania Petra, Bernhard Schmitzer, Christoph Schnörr
Beschreibung
Zusammenfassung:We introduce a smooth non-convex approach in a novel geometric framework which complements established convex and non-convex approaches to image labeling. The major underlying concept is a smooth manifold of probabilistic assignments of a prespecified set of prior data (the “labels”) to given image data. The Riemannian gradient flow with respect to a corresponding objective function evolves on the manifold and terminates, for any δ>0δ>0\delta > 0, within a δδ\delta -neighborhood of an unique assignment (labeling). As a consequence, unlike with convex outer relaxation approaches to (non-submodular) image labeling problems, no post-processing step is needed for the rounding of fractional solutions. Our approach is numerically implemented with sparse, highly-parallel interior-point updates that efficiently converge, largely independent from the number of labels. Experiments with noisy labeling and inpainting problems demonstrate competitive performance.
Beschreibung:Gesehen am 13.03.2018
Beschreibung:Online Resource
ISBN:9783319464541
DOI:10.1007/978-3-319-46454-1_9