Behavior of eigenvalues in a region of broken-PT symmetry

PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. When $\varepsilon\geq0$, the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive. This portion of parameter space is known as the region of unbroken PT symmetry. In the region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bender, Carl M. (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1702.03811
Volltext
Verfasserangaben:Carl M. Bender, Nima Hassanpour, Daniel W. Hook, S.P. Klevansky, Christoph Sünderhauf, and Zichao Wen
Beschreibung
Zusammenfassung:PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. When $\varepsilon\geq0$, the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive. This portion of parameter space is known as the region of unbroken PT symmetry. In the region of broken PT symmetry $\varepsilon<0$ only a finite number of eigenvalues are real and the remaining eigenvalues appear as complex-conjugate pairs. The region of unbroken PT symmetry has been studied but the region of broken PT symmetry has thus far been unexplored. This paper presents a detailed numerical and analytical examination of the behavior of the eigenvalues for $-4<\varepsilon<0$. In particular, it reports the discovery of an infinite-order exceptional point at $\varepsilon=-1$, a transition from a discrete spectrum to a partially continuous spectrum at $\varepsilon=-2$, a transition at the Coulomb value $\varepsilon=-3$, and the behavior of the eigenvalues as $\varepsilon$ approaches the conformal limit $\varepsilon=-4$.
Beschreibung:Gesehen am 10.12.2020
Beschreibung:Online Resource