Behavior of eigenvalues in a region of broken-PT symmetry
PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. When $\varepsilon\geq0$, the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive. This portion of parameter space is known as the region of unbroken PT symmetry. In the region...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1702.03811 |
| Verfasserangaben: | Carl M. Bender, Nima Hassanpour, Daniel W. Hook, S.P. Klevansky, Christoph Sünderhauf, and Zichao Wen |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571035001 | ||
| 003 | DE-627 | ||
| 005 | 20220814092351.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180314s2017 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1571035001 | ||
| 035 | |a (DE-576)501035001 | ||
| 035 | |a (DE-599)BSZ501035001 | ||
| 035 | |a (OCoLC)1340994301 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Bender, Carl M. |d 1943- |e VerfasserIn |0 (DE-588)1175669601 |0 (DE-627)1046958488 |0 (DE-576)516383167 |4 aut | |
| 245 | 1 | 0 | |a Behavior of eigenvalues in a region of broken-PT symmetry |c Carl M. Bender, Nima Hassanpour, Daniel W. Hook, S.P. Klevansky, Christoph Sünderhauf, and Zichao Wen |
| 264 | 1 | |c 2017 | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.12.2020 | ||
| 520 | |a PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. When $\varepsilon\geq0$, the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive. This portion of parameter space is known as the region of unbroken PT symmetry. In the region of broken PT symmetry $\varepsilon<0$ only a finite number of eigenvalues are real and the remaining eigenvalues appear as complex-conjugate pairs. The region of unbroken PT symmetry has been studied but the region of broken PT symmetry has thus far been unexplored. This paper presents a detailed numerical and analytical examination of the behavior of the eigenvalues for $-4<\varepsilon<0$. In particular, it reports the discovery of an infinite-order exceptional point at $\varepsilon=-1$, a transition from a discrete spectrum to a partially continuous spectrum at $\varepsilon=-2$, a transition at the Coulomb value $\varepsilon=-3$, and the behavior of the eigenvalues as $\varepsilon$ approaches the conformal limit $\varepsilon=-4$. | ||
| 650 | 4 | |a Quantum Physics | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematical Physics | |
| 700 | 1 | |a Klevansky, Sandra Pamela |d 1959- |e VerfasserIn |0 (DE-588)1084353393 |0 (DE-627)848523520 |0 (DE-576)456294600 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2017) Artikel-Nummer 1702.03811, 14 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Behavior of eigenvalues in a region of broken-PT symmetry |
| 773 | 1 | 8 | |g year:2017 |g extent:14 |a Behavior of eigenvalues in a region of broken-PT symmetry |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1702.03811 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180314 | ||
| 993 | |a Article | ||
| 998 | |g 1084353393 |a Klevansky, Sandra Pamela |m 1084353393:Klevansky, Sandra Pamela |d 130000 |d 700000 |d 741000 |d 741010 |e 130000PK1084353393 |e 700000PK1084353393 |e 741000PK1084353393 |e 741010PK1084353393 |k 0/130000/ |k 0/700000/ |k 1/700000/741000/ |k 2/700000/741000/741010/ |p 4 | ||
| 999 | |a KXP-PPN1571035001 |e 3003152440 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Gesehen am 10.12.2020"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1571035001","language":["eng"],"person":[{"family":"Bender","given":"Carl M.","roleDisplay":"VerfasserIn","display":"Bender, Carl M.","role":"aut"},{"display":"Klevansky, Sandra Pamela","roleDisplay":"VerfasserIn","role":"aut","family":"Klevansky","given":"Sandra Pamela"}],"title":[{"title":"Behavior of eigenvalues in a region of broken-PT symmetry","title_sort":"Behavior of eigenvalues in a region of broken-PT symmetry"}],"physDesc":[{"extent":"14 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"language":["eng"],"recId":"509006531","type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"Behavior of eigenvalues in a region of broken-PT symmetryArxiv","note":["Gesehen am 28.05.2024"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"14","text":"(2017) Artikel-Nummer 1702.03811, 14 Seiten","year":"2017"},"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"name":{"displayForm":["Carl M. Bender, Nima Hassanpour, Daniel W. Hook, S.P. Klevansky, Christoph Sünderhauf, and Zichao Wen"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"id":{"eki":["1571035001"]}} | ||
| SRT | |a BENDERCARLBEHAVIOROF2017 | ||