Graphical model parameter learning by inverse linear programming

We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trajkovska, Vera (VerfasserIn) , Swoboda, Paul (VerfasserIn) , Åström, Freddie (VerfasserIn) , Petra, Stefania (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 18 May 2017
In: Scale Space and Variational Methods in Computer Vision
Year: 2017, Pages: 323-334
DOI:10.1007/978-3-319-58771-4_26
Schlagworte:
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-58771-4_26
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-58771-4_26
Volltext
Verfasserangaben:Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra

MARC

LEADER 00000caa a2200000 c 4500
001 1571088431
003 DE-627
005 20220814093235.0
007 cr uuu---uuuuu
008 180315s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/978-3-319-58771-4_26  |2 doi 
035 |a (DE-627)1571088431 
035 |a (DE-576)501088431 
035 |a (DE-599)BSZ501088431 
035 |a (OCoLC)1340994316 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Trajkovska, Vera  |e VerfasserIn  |0 (DE-588)115115086X  |0 (DE-627)1011385104  |0 (DE-576)497515741  |4 aut 
245 1 0 |a Graphical model parameter learning by inverse linear programming  |c Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra 
264 1 |c 18 May 2017 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.03.2018 
520 |a We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches. 
655 7 |a Konferenzschrift  |0 (DE-588)1071861417  |0 (DE-627)826484824  |0 (DE-576)433375485  |2 gnd-content 
700 1 |a Swoboda, Paul  |e VerfasserIn  |0 (DE-588)1066353379  |0 (DE-627)817351434  |0 (DE-576)425790231  |4 aut 
700 1 |a Åström, Freddie  |e VerfasserIn  |0 (DE-588)1153903539  |0 (DE-627)1015504132  |0 (DE-576)500624267  |4 aut 
700 1 |a Petra, Stefania  |e VerfasserIn  |0 (DE-588)1065905580  |0 (DE-627)816924961  |0 (DE-576)425560155  |4 aut 
773 0 8 |i Enthalten in  |t Scale Space and Variational Methods in Computer Vision  |d Cham : Springer, 2017  |g (2017), Seite 323-334  |h Online-Ressource (XV, 708 p. 244 illus, online resource)  |w (DE-627)165910999X  |w (DE-576)489629679  |z 9783319587714  |7 nnam  |a Graphical model parameter learning by inverse linear programming 
773 1 8 |g year:2017  |g pages:323-334  |g extent:12  |a Graphical model parameter learning by inverse linear programming 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-58771-4_26  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/chapter/10.1007/978-3-319-58771-4_26  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180315 
993 |a ConferencePaper 
994 |a 2017 
998 |g 1065905580  |a Petra, Stefania  |m 1065905580:Petra, Stefania  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PP1065905580  |e 110200PP1065905580  |e 110000PP1065905580  |e 110400PP1065905580  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 4  |y j 
998 |g 1153903539  |a Åström, Freddie  |m 1153903539:Åström, Freddie  |d 700000  |d 708070  |e 700000PA1153903539  |e 708070PA1153903539  |k 0/700000/  |k 1/700000/708070/  |p 3 
998 |g 1066353379  |a Swoboda, Paul  |m 1066353379:Swoboda, Paul  |p 2 
998 |g 115115086X  |a Trajkovska, Vera  |m 115115086X:Trajkovska, Vera  |d 700000  |d 708000  |e 700000PT115115086X  |e 708000PT115115086X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1571088431  |e 3003441485 
BIB |a Y 
JSO |a {"person":[{"family":"Trajkovska","role":"aut","roleDisplay":"VerfasserIn","given":"Vera","display":"Trajkovska, Vera"},{"roleDisplay":"VerfasserIn","role":"aut","family":"Swoboda","display":"Swoboda, Paul","given":"Paul"},{"family":"Åström","role":"aut","roleDisplay":"VerfasserIn","given":"Freddie","display":"Åström, Freddie"},{"family":"Petra","role":"aut","roleDisplay":"VerfasserIn","given":"Stefania","display":"Petra, Stefania"}],"title":[{"title_sort":"Graphical model parameter learning by inverse linear programming","title":"Graphical model parameter learning by inverse linear programming"}],"name":{"displayForm":["Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra"]},"relHost":[{"id":{"doi":["10.1007/978-3-319-58771-4"],"isbn":["9783319587714"],"eki":["165910999X"]},"recId":"165910999X","language":["eng"],"relMultPart":[{"title":[{"title_sort":"Lecture notes in computer science","title":"Lecture notes in computer science"}],"disp":"Lecture Notes in Computer Science","dispAlt":"Lecture notes in computer science","titleAlt":[{"title":"LNCS online"},{"title":"LNAI"},{"title":"Lecture notes in artificial intelligence"},{"title":"Lecture notes in bioinformatics"},{"title":"LNAI"},{"title":"LNBI"},{"title":"LNCS-LNAI"},{"title":"LNCS-LNBI"}],"part":{"number":["10302"],"number_sort":["10302"]},"pubHistory":["1.1973 -"],"origin":[{"publisher":"Springer","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1973","dateIssuedDisp":"1973-"}],"type":{"bibl":"serial","media":"Online-Ressource"},"note":["Gesehen am 28.02.20","Das Gesamtwerk gliedert sich in: Lecture notes in artificial intelligence; Lecture notes in bioinformatics"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2018930-8"],"eki":["316228877"],"issn":["1611-3349"]},"recId":"316228877"}],"physDesc":[{"extent":"Online-Ressource (XV, 708 p. 244 illus, online resource)"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"part":{"text":"10302, (2017), Seite 323-334","year":"2017","pages":"323-334","extent":"12"},"origin":[{"publisher":"Springer","publisherPlace":"Cham","dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"name":{"displayForm":["edited by François Lauze, Yiqiu Dong, Anders Bjorholm Dahl"]},"person":[{"display":"Lauze, Francois","given":"Francois","family":"Lauze","role":"edt","roleDisplay":"Hrsg."},{"display":"Dong, Yiqiu","given":"Yiqiu","family":"Dong","roleDisplay":"Hrsg.","role":"edt"},{"family":"Dahl","roleDisplay":"Hrsg.","role":"edt","given":"Anders Bjorholm","display":"Dahl, Anders Bjorholm"}],"title":[{"title":"Scale Space and Variational Methods in Computer Vision","subtitle":"6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings","title_sort":"Scale Space and Variational Methods in Computer Vision"}],"disp":"Graphical model parameter learning by inverse linear programmingScale Space and Variational Methods in Computer Vision"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 15.03.2018"],"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"18 May 2017"}],"recId":"1571088431","id":{"doi":["10.1007/978-3-319-58771-4_26"],"eki":["1571088431"]},"physDesc":[{"extent":"12 S."}],"language":["eng"]} 
SRT |a TRAJKOVSKAGRAPHICALM1820