Graphical model parameter learning by inverse linear programming
We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Kapitel/Artikel Konferenzschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
18 May 2017
|
| In: |
Scale Space and Variational Methods in Computer Vision
Year: 2017, Pages: 323-334 |
| DOI: | 10.1007/978-3-319-58771-4_26 |
| Schlagworte: | |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-58771-4_26 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-58771-4_26 |
| Verfasserangaben: | Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571088431 | ||
| 003 | DE-627 | ||
| 005 | 20220814093235.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180315s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/978-3-319-58771-4_26 |2 doi | |
| 035 | |a (DE-627)1571088431 | ||
| 035 | |a (DE-576)501088431 | ||
| 035 | |a (DE-599)BSZ501088431 | ||
| 035 | |a (OCoLC)1340994316 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Trajkovska, Vera |e VerfasserIn |0 (DE-588)115115086X |0 (DE-627)1011385104 |0 (DE-576)497515741 |4 aut | |
| 245 | 1 | 0 | |a Graphical model parameter learning by inverse linear programming |c Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra |
| 264 | 1 | |c 18 May 2017 | |
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.03.2018 | ||
| 520 | |a We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches. | ||
| 655 | 7 | |a Konferenzschrift |0 (DE-588)1071861417 |0 (DE-627)826484824 |0 (DE-576)433375485 |2 gnd-content | |
| 700 | 1 | |a Swoboda, Paul |e VerfasserIn |0 (DE-588)1066353379 |0 (DE-627)817351434 |0 (DE-576)425790231 |4 aut | |
| 700 | 1 | |a Åström, Freddie |e VerfasserIn |0 (DE-588)1153903539 |0 (DE-627)1015504132 |0 (DE-576)500624267 |4 aut | |
| 700 | 1 | |a Petra, Stefania |e VerfasserIn |0 (DE-588)1065905580 |0 (DE-627)816924961 |0 (DE-576)425560155 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Scale Space and Variational Methods in Computer Vision |d Cham : Springer, 2017 |g (2017), Seite 323-334 |h Online-Ressource (XV, 708 p. 244 illus, online resource) |w (DE-627)165910999X |w (DE-576)489629679 |z 9783319587714 |7 nnam |a Graphical model parameter learning by inverse linear programming |
| 773 | 1 | 8 | |g year:2017 |g pages:323-334 |g extent:12 |a Graphical model parameter learning by inverse linear programming |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-319-58771-4_26 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/chapter/10.1007/978-3-319-58771-4_26 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180315 | ||
| 993 | |a ConferencePaper | ||
| 994 | |a 2017 | ||
| 998 | |g 1065905580 |a Petra, Stefania |m 1065905580:Petra, Stefania |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PP1065905580 |e 110200PP1065905580 |e 110000PP1065905580 |e 110400PP1065905580 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 4 |y j | ||
| 998 | |g 1153903539 |a Åström, Freddie |m 1153903539:Åström, Freddie |d 700000 |d 708070 |e 700000PA1153903539 |e 708070PA1153903539 |k 0/700000/ |k 1/700000/708070/ |p 3 | ||
| 998 | |g 1066353379 |a Swoboda, Paul |m 1066353379:Swoboda, Paul |p 2 | ||
| 998 | |g 115115086X |a Trajkovska, Vera |m 115115086X:Trajkovska, Vera |d 700000 |d 708000 |e 700000PT115115086X |e 708000PT115115086X |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1571088431 |e 3003441485 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"family":"Trajkovska","role":"aut","roleDisplay":"VerfasserIn","given":"Vera","display":"Trajkovska, Vera"},{"roleDisplay":"VerfasserIn","role":"aut","family":"Swoboda","display":"Swoboda, Paul","given":"Paul"},{"family":"Åström","role":"aut","roleDisplay":"VerfasserIn","given":"Freddie","display":"Åström, Freddie"},{"family":"Petra","role":"aut","roleDisplay":"VerfasserIn","given":"Stefania","display":"Petra, Stefania"}],"title":[{"title_sort":"Graphical model parameter learning by inverse linear programming","title":"Graphical model parameter learning by inverse linear programming"}],"name":{"displayForm":["Vera Trajkovska, Paul Swoboda, Freddie Åström, Stefania Petra"]},"relHost":[{"id":{"doi":["10.1007/978-3-319-58771-4"],"isbn":["9783319587714"],"eki":["165910999X"]},"recId":"165910999X","language":["eng"],"relMultPart":[{"title":[{"title_sort":"Lecture notes in computer science","title":"Lecture notes in computer science"}],"disp":"Lecture Notes in Computer Science","dispAlt":"Lecture notes in computer science","titleAlt":[{"title":"LNCS online"},{"title":"LNAI"},{"title":"Lecture notes in artificial intelligence"},{"title":"Lecture notes in bioinformatics"},{"title":"LNAI"},{"title":"LNBI"},{"title":"LNCS-LNAI"},{"title":"LNCS-LNBI"}],"part":{"number":["10302"],"number_sort":["10302"]},"pubHistory":["1.1973 -"],"origin":[{"publisher":"Springer","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1973","dateIssuedDisp":"1973-"}],"type":{"bibl":"serial","media":"Online-Ressource"},"note":["Gesehen am 28.02.20","Das Gesamtwerk gliedert sich in: Lecture notes in artificial intelligence; Lecture notes in bioinformatics"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2018930-8"],"eki":["316228877"],"issn":["1611-3349"]},"recId":"316228877"}],"physDesc":[{"extent":"Online-Ressource (XV, 708 p. 244 illus, online resource)"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"part":{"text":"10302, (2017), Seite 323-334","year":"2017","pages":"323-334","extent":"12"},"origin":[{"publisher":"Springer","publisherPlace":"Cham","dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"name":{"displayForm":["edited by François Lauze, Yiqiu Dong, Anders Bjorholm Dahl"]},"person":[{"display":"Lauze, Francois","given":"Francois","family":"Lauze","role":"edt","roleDisplay":"Hrsg."},{"display":"Dong, Yiqiu","given":"Yiqiu","family":"Dong","roleDisplay":"Hrsg.","role":"edt"},{"family":"Dahl","roleDisplay":"Hrsg.","role":"edt","given":"Anders Bjorholm","display":"Dahl, Anders Bjorholm"}],"title":[{"title":"Scale Space and Variational Methods in Computer Vision","subtitle":"6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings","title_sort":"Scale Space and Variational Methods in Computer Vision"}],"disp":"Graphical model parameter learning by inverse linear programmingScale Space and Variational Methods in Computer Vision"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 15.03.2018"],"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"18 May 2017"}],"recId":"1571088431","id":{"doi":["10.1007/978-3-319-58771-4_26"],"eki":["1571088431"]},"physDesc":[{"extent":"12 S."}],"language":["eng"]} | ||
| SRT | |a TRAJKOVSKAGRAPHICALM1820 | ||