Single projection Kaczmarz extended algorithms

In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current...

Full description

Saved in:
Bibliographic Details
Main Authors: Petra, Stefania (Author) , Popa, Constantin (Author)
Format: Article (Journal)
Language:English
Published: 02 March 2016
In: Numerical algorithms
Year: 2016, Volume: 73, Issue: 3, Pages: 791-806
ISSN:1572-9265
DOI:10.1007/s11075-016-0118-7
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s11075-016-0118-7
Verlag, Volltext: https://link.springer.com/article/10.1007/s11075-016-0118-7
Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2Fs11075-016-0118-7.pdf
Get full text
Author Notes:Stefania Petra, Constantin Popa

MARC

LEADER 00000caa a2200000 c 4500
001 1571089403
003 DE-627
005 20220814093253.0
007 cr uuu---uuuuu
008 180315s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11075-016-0118-7  |2 doi 
035 |a (DE-627)1571089403 
035 |a (DE-576)501089403 
035 |a (DE-599)BSZ501089403 
035 |a (OCoLC)1340994353 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Petra, Stefania  |e VerfasserIn  |0 (DE-588)1065905580  |0 (DE-627)816924961  |0 (DE-576)425560155  |4 aut 
245 1 0 |a Single projection Kaczmarz extended algorithms  |c Stefania Petra, Constantin Popa 
264 1 |c 02 March 2016 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.03.2018 
520 |a In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current approximation of this system. It has been shown that for random corrections of the right hand side and Kaczmarz updates selected at random, the algorithm converges to the least squares solution. In this work we consider deterministic strategies like the maximal-residual and the almost-cyclic control, and show convergence to a least squares solution. 
700 1 |a Popa, Constantin  |e VerfasserIn  |0 (DE-588)1153915316  |0 (DE-627)1015514618  |0 (DE-576)500634467  |4 aut 
773 0 8 |i Enthalten in  |t Numerical algorithms  |d Bussum : Baltzer, 1991  |g 73(2016), 3, Seite 791-806  |h Online-Ressource  |w (DE-627)318468581  |w (DE-600)2002650-X  |w (DE-576)094641803  |x 1572-9265  |7 nnas  |a Single projection Kaczmarz extended algorithms 
773 1 8 |g volume:73  |g year:2016  |g number:3  |g pages:791-806  |g extent:16  |a Single projection Kaczmarz extended algorithms 
856 4 0 |u http://dx.doi.org/10.1007/s11075-016-0118-7  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s11075-016-0118-7  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/content/pdf/10.1007%2Fs11075-016-0118-7.pdf  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180315 
993 |a Article 
994 |a 2016 
998 |g 1065905580  |a Petra, Stefania  |m 1065905580:Petra, Stefania  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PP1065905580  |e 110200PP1065905580  |e 110000PP1065905580  |e 110400PP1065905580  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1571089403  |e 3003442740 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"16 S."}],"relHost":[{"part":{"extent":"16","volume":"73","text":"73(2016), 3, Seite 791-806","pages":"791-806","issue":"3","year":"2016"},"pubHistory":["1.1991 -"],"recId":"318468581","language":["eng"],"note":["Gesehen am 02.12.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Single projection Kaczmarz extended algorithmsNumerical algorithms","title":[{"title_sort":"Numerical algorithms","title":"Numerical algorithms"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["318468581"],"zdb":["2002650-X"],"issn":["1572-9265"]},"origin":[{"publisherPlace":"Bussum ; Dordrecht ; London [u.a.]","dateIssuedDisp":"1991-","publisher":"Baltzer ; Springer Science Business Media B.V. ; Kluwer","dateIssuedKey":"1991"}]}],"name":{"displayForm":["Stefania Petra, Constantin Popa"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"02 March 2016"}],"id":{"doi":["10.1007/s11075-016-0118-7"],"eki":["1571089403"]},"note":["Gesehen am 15.03.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1571089403","person":[{"roleDisplay":"VerfasserIn","display":"Petra, Stefania","role":"aut","family":"Petra","given":"Stefania"},{"family":"Popa","given":"Constantin","display":"Popa, Constantin","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Single projection Kaczmarz extended algorithms","title":"Single projection Kaczmarz extended algorithms"}]} 
SRT |a PETRASTEFASINGLEPROJ0220