Single projection Kaczmarz extended algorithms
In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
02 March 2016
|
| In: |
Numerical algorithms
Year: 2016, Volume: 73, Issue: 3, Pages: 791-806 |
| ISSN: | 1572-9265 |
| DOI: | 10.1007/s11075-016-0118-7 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s11075-016-0118-7 Verlag, Volltext: https://link.springer.com/article/10.1007/s11075-016-0118-7 Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2Fs11075-016-0118-7.pdf |
| Author Notes: | Stefania Petra, Constantin Popa |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571089403 | ||
| 003 | DE-627 | ||
| 005 | 20220814093253.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180315s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s11075-016-0118-7 |2 doi | |
| 035 | |a (DE-627)1571089403 | ||
| 035 | |a (DE-576)501089403 | ||
| 035 | |a (DE-599)BSZ501089403 | ||
| 035 | |a (OCoLC)1340994353 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Petra, Stefania |e VerfasserIn |0 (DE-588)1065905580 |0 (DE-627)816924961 |0 (DE-576)425560155 |4 aut | |
| 245 | 1 | 0 | |a Single projection Kaczmarz extended algorithms |c Stefania Petra, Constantin Popa |
| 264 | 1 | |c 02 March 2016 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.03.2018 | ||
| 520 | |a In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current approximation of this system. It has been shown that for random corrections of the right hand side and Kaczmarz updates selected at random, the algorithm converges to the least squares solution. In this work we consider deterministic strategies like the maximal-residual and the almost-cyclic control, and show convergence to a least squares solution. | ||
| 700 | 1 | |a Popa, Constantin |e VerfasserIn |0 (DE-588)1153915316 |0 (DE-627)1015514618 |0 (DE-576)500634467 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Numerical algorithms |d Bussum : Baltzer, 1991 |g 73(2016), 3, Seite 791-806 |h Online-Ressource |w (DE-627)318468581 |w (DE-600)2002650-X |w (DE-576)094641803 |x 1572-9265 |7 nnas |a Single projection Kaczmarz extended algorithms |
| 773 | 1 | 8 | |g volume:73 |g year:2016 |g number:3 |g pages:791-806 |g extent:16 |a Single projection Kaczmarz extended algorithms |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s11075-016-0118-7 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s11075-016-0118-7 |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/content/pdf/10.1007%2Fs11075-016-0118-7.pdf |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180315 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1065905580 |a Petra, Stefania |m 1065905580:Petra, Stefania |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PP1065905580 |e 110200PP1065905580 |e 110000PP1065905580 |e 110400PP1065905580 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1571089403 |e 3003442740 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"16 S."}],"relHost":[{"part":{"extent":"16","volume":"73","text":"73(2016), 3, Seite 791-806","pages":"791-806","issue":"3","year":"2016"},"pubHistory":["1.1991 -"],"recId":"318468581","language":["eng"],"note":["Gesehen am 02.12.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Single projection Kaczmarz extended algorithmsNumerical algorithms","title":[{"title_sort":"Numerical algorithms","title":"Numerical algorithms"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["318468581"],"zdb":["2002650-X"],"issn":["1572-9265"]},"origin":[{"publisherPlace":"Bussum ; Dordrecht ; London [u.a.]","dateIssuedDisp":"1991-","publisher":"Baltzer ; Springer Science Business Media B.V. ; Kluwer","dateIssuedKey":"1991"}]}],"name":{"displayForm":["Stefania Petra, Constantin Popa"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"02 March 2016"}],"id":{"doi":["10.1007/s11075-016-0118-7"],"eki":["1571089403"]},"note":["Gesehen am 15.03.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1571089403","person":[{"roleDisplay":"VerfasserIn","display":"Petra, Stefania","role":"aut","family":"Petra","given":"Stefania"},{"family":"Popa","given":"Constantin","display":"Popa, Constantin","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Single projection Kaczmarz extended algorithms","title":"Single projection Kaczmarz extended algorithms"}]} | ||
| SRT | |a PETRASTEFASINGLEPROJ0220 | ||