Beijing lectures on the grade restriction rule

The authors describe the relationships between categories of B-branes in different phases of the non-Abelian gauged linear sigma model. The relationship is described explicitly for the model proposed by Hori and Tong with non-Abelian gauge group that connects two non-birational Calabi-Yau varieties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eager, Richard (VerfasserIn) , Hori, Kentaro (VerfasserIn) , Knapp, Johanna (VerfasserIn) , Romo, Mauricio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 July 2017
In: Chinese annals of mathematics
Year: 2017, Jahrgang: 38, Heft: 4, Pages: 901-912
ISSN:1860-6261
DOI:10.1007/s11401-017-1103-8
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s11401-017-1103-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s11401-017-1103-8
Volltext
Verfasserangaben:Richard Eager, Kentaro Hori, Johanna Knapp, Mauricio Romo
Beschreibung
Zusammenfassung:The authors describe the relationships between categories of B-branes in different phases of the non-Abelian gauged linear sigma model. The relationship is described explicitly for the model proposed by Hori and Tong with non-Abelian gauge group that connects two non-birational Calabi-Yau varieties studied by Rødland. A grade restriction rule for this model is derived using the hemisphere partition function and it is used to map B-type D-branes between the two Calabi-Yau varieties.
Beschreibung:Gesehen am 15.03.2017
Beschreibung:Online Resource
ISSN:1860-6261
DOI:10.1007/s11401-017-1103-8