On semisimple l-modular Bernstein-blocks of a p-adic general linear group
Let Gn=GLn(F), where F is a non-archimedean local field with residue characteristic p. Our starting point is the Bernstein decomposition of the representation category of Gn over an algebraically closed field of positive characteristic ℓ≠p into blocks. In level zero, we associate to each block a re...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
14 June 2013
|
| In: |
Journal of number theory
Year: 2013, Volume: 133, Issue: 10, Pages: 3524-3548 |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2013.04.012 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1016/j.jnt.2013.04.012 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0022314X13001327 |
| Author Notes: | David-Alexandre Guiraud |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571155392 | ||
| 003 | DE-627 | ||
| 005 | 20220814094028.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180316s2013 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jnt.2013.04.012 |2 doi | |
| 035 | |a (DE-627)1571155392 | ||
| 035 | |a (DE-576)501155392 | ||
| 035 | |a (DE-599)BSZ501155392 | ||
| 035 | |a (OCoLC)1340994448 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Guiraud, David-Alexandre |e VerfasserIn |0 (DE-588)1089078218 |0 (DE-627)850979234 |0 (DE-576)459401882 |4 aut | |
| 245 | 1 | 0 | |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group |c David-Alexandre Guiraud |
| 264 | 1 | |c 14 June 2013 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.03.2018 | ||
| 520 | |a Let Gn=GLn(F), where F is a non-archimedean local field with residue characteristic p. Our starting point is the Bernstein decomposition of the representation category of Gn over an algebraically closed field of positive characteristic ℓ≠p into blocks. In level zero, we associate to each block a replacement for the Iwahori-Hecke algebra which provides a Morita equivalence as in the complex case. Additionally, we explain how this gives rise to a description of an arbitrary Gn-block in terms of simple Gm-blocks (for m⩽n), parallelling the approach of Bushnell and Kutzko in the complex setting. | ||
| 650 | 4 | |a mod- representation theory of -adic groups | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of number theory |d Orlando, Fla. : Elsevier, 1969 |g 133(2013), 10, Seite 3524-3548 |h Online-Ressource |w (DE-627)267328192 |w (DE-600)1469778-6 |w (DE-576)103373241 |x 1096-1658 |7 nnas |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group |
| 773 | 1 | 8 | |g volume:133 |g year:2013 |g number:10 |g pages:3524-3548 |g extent:25 |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.jnt.2013.04.012 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0022314X13001327 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180316 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 1089078218 |a Guiraud, David-Alexandre |m 1089078218:Guiraud, David-Alexandre |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PG1089078218 |e 110100PG1089078218 |e 110000PG1089078218 |e 110400PG1089078218 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1571155392 |e 3003581031 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"14 June 2013"}],"id":{"doi":["10.1016/j.jnt.2013.04.012"],"eki":["1571155392"]},"name":{"displayForm":["David-Alexandre Guiraud"]},"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"title":"Journal of number theory","title_sort":"Journal of number theory"}],"pubHistory":["1.1969 -"],"part":{"year":"2013","pages":"3524-3548","issue":"10","volume":"133","text":"133(2013), 10, Seite 3524-3548","extent":"25"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"On semisimple l-modular Bernstein-blocks of a p-adic general linear groupJournal of number theory","note":["Gesehen am 20.06.2023"],"recId":"267328192","language":["eng"],"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1969-","publisher":"Elsevier ; Acad. Pr. ; Acad. Press","dateIssuedKey":"1969"}],"id":{"issn":["1096-1658"],"eki":["267328192"],"zdb":["1469778-6"]},"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"On semisimple l-modular Bernstein-blocks of a p-adic general linear group","title":"On semisimple l-modular Bernstein-blocks of a p-adic general linear group"}],"person":[{"given":"David-Alexandre","family":"Guiraud","role":"aut","roleDisplay":"VerfasserIn","display":"Guiraud, David-Alexandre"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 16.03.2018"],"recId":"1571155392","language":["eng"]} | ||
| SRT | |a GUIRAUDDAVONSEMISIMP1420 | ||