On semisimple l-modular Bernstein-blocks of a p-adic general linear group

Let Gn=GLn(F), where F is a non-archimedean local field with residue characteristic p. Our starting point is the Bernstein decomposition of the representation category of Gn over an algebraically closed field of positive characteristic ℓ≠p into blocks. In level zero, we associate to each block a re...

Full description

Saved in:
Bibliographic Details
Main Author: Guiraud, David-Alexandre (Author)
Format: Article (Journal)
Language:English
Published: 14 June 2013
In: Journal of number theory
Year: 2013, Volume: 133, Issue: 10, Pages: 3524-3548
ISSN:1096-1658
DOI:10.1016/j.jnt.2013.04.012
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.jnt.2013.04.012
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0022314X13001327
Get full text
Author Notes:David-Alexandre Guiraud

MARC

LEADER 00000caa a2200000 c 4500
001 1571155392
003 DE-627
005 20220814094028.0
007 cr uuu---uuuuu
008 180316s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jnt.2013.04.012  |2 doi 
035 |a (DE-627)1571155392 
035 |a (DE-576)501155392 
035 |a (DE-599)BSZ501155392 
035 |a (OCoLC)1340994448 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Guiraud, David-Alexandre  |e VerfasserIn  |0 (DE-588)1089078218  |0 (DE-627)850979234  |0 (DE-576)459401882  |4 aut 
245 1 0 |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group  |c David-Alexandre Guiraud 
264 1 |c 14 June 2013 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.03.2018 
520 |a Let Gn=GLn(F), where F is a non-archimedean local field with residue characteristic p. Our starting point is the Bernstein decomposition of the representation category of Gn over an algebraically closed field of positive characteristic ℓ≠p into blocks. In level zero, we associate to each block a replacement for the Iwahori-Hecke algebra which provides a Morita equivalence as in the complex case. Additionally, we explain how this gives rise to a description of an arbitrary Gn-block in terms of simple Gm-blocks (for m⩽n), parallelling the approach of Bushnell and Kutzko in the complex setting. 
650 4 |a mod- representation theory of -adic groups 
773 0 8 |i Enthalten in  |t Journal of number theory  |d Orlando, Fla. : Elsevier, 1969  |g 133(2013), 10, Seite 3524-3548  |h Online-Ressource  |w (DE-627)267328192  |w (DE-600)1469778-6  |w (DE-576)103373241  |x 1096-1658  |7 nnas  |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group 
773 1 8 |g volume:133  |g year:2013  |g number:10  |g pages:3524-3548  |g extent:25  |a On semisimple l-modular Bernstein-blocks of a p-adic general linear group 
856 4 0 |u http://dx.doi.org/10.1016/j.jnt.2013.04.012  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0022314X13001327  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180316 
993 |a Article 
994 |a 2013 
998 |g 1089078218  |a Guiraud, David-Alexandre  |m 1089078218:Guiraud, David-Alexandre  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PG1089078218  |e 110100PG1089078218  |e 110000PG1089078218  |e 110400PG1089078218  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1571155392  |e 3003581031 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"14 June 2013"}],"id":{"doi":["10.1016/j.jnt.2013.04.012"],"eki":["1571155392"]},"name":{"displayForm":["David-Alexandre Guiraud"]},"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"title":"Journal of number theory","title_sort":"Journal of number theory"}],"pubHistory":["1.1969 -"],"part":{"year":"2013","pages":"3524-3548","issue":"10","volume":"133","text":"133(2013), 10, Seite 3524-3548","extent":"25"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"On semisimple l-modular Bernstein-blocks of a p-adic general linear groupJournal of number theory","note":["Gesehen am 20.06.2023"],"recId":"267328192","language":["eng"],"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1969-","publisher":"Elsevier ; Acad. Pr. ; Acad. Press","dateIssuedKey":"1969"}],"id":{"issn":["1096-1658"],"eki":["267328192"],"zdb":["1469778-6"]},"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"On semisimple l-modular Bernstein-blocks of a p-adic general linear group","title":"On semisimple l-modular Bernstein-blocks of a p-adic general linear group"}],"person":[{"given":"David-Alexandre","family":"Guiraud","role":"aut","roleDisplay":"VerfasserIn","display":"Guiraud, David-Alexandre"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 16.03.2018"],"recId":"1571155392","language":["eng"]} 
SRT |a GUIRAUDDAVONSEMISIMP1420