Quantum sheaf cohomology on Grassmannians
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been comput...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
May 2017
|
| In: |
Communications in mathematical physics
Year: 2017, Jahrgang: 352, Heft: 1, Pages: 135-184 |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-016-2763-z |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00220-016-2763-z Verlag, Volltext: https://link.springer.com/article/10.1007/s00220-016-2763-z |
| Verfasserangaben: | Jirui Guo, Zhentao Lu, Eric Sharpe |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571232893 | ||
| 003 | DE-627 | ||
| 005 | 20220814094805.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180320s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00220-016-2763-z |2 doi | |
| 035 | |a (DE-627)1571232893 | ||
| 035 | |a (DE-576)501232893 | ||
| 035 | |a (DE-599)BSZ501232893 | ||
| 035 | |a (OCoLC)1340994801 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Guo, Jirui |e VerfasserIn |0 (DE-588)1154800474 |0 (DE-627)1016156685 |0 (DE-576)501231471 |4 aut | |
| 245 | 1 | 0 | |a Quantum sheaf cohomology on Grassmannians |c Jirui Guo, Zhentao Lu, Eric Sharpe |
| 264 | 1 | |c May 2017 | |
| 300 | |a 50 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 19 October 2016 | ||
| 500 | |a Gesehen am 20.03.2018 | ||
| 520 | |a In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring. | ||
| 700 | 1 | |a Lu, Zhentao |e VerfasserIn |0 (DE-588)1154799484 |0 (DE-627)1016155484 |0 (DE-576)501230769 |4 aut | |
| 700 | 1 | |a Sharpe, Eric |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Berlin : Springer, 1965 |g 352(2017), 1, Seite 135-184 |h Online-Ressource |w (DE-627)253721628 |w (DE-600)1458931-X |w (DE-576)072372184 |x 1432-0916 |7 nnas |a Quantum sheaf cohomology on Grassmannians |
| 773 | 1 | 8 | |g volume:352 |g year:2017 |g number:1 |g pages:135-184 |g extent:50 |a Quantum sheaf cohomology on Grassmannians |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00220-016-2763-z |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00220-016-2763-z |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180320 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1154799484 |a Lu, Zhentao |m 1154799484:Lu, Zhentao |p 2 | ||
| 999 | |a KXP-PPN1571232893 |e 3003738720 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"title":[{"title":"Communications in mathematical physics","title_sort":"Communications in mathematical physics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Quantum sheaf cohomology on GrassmanniansCommunications in mathematical physics","note":["Gesehen am 18.04.08"],"recId":"253721628","language":["eng"],"pubHistory":["1.1965 -"],"part":{"issue":"1","pages":"135-184","year":"2017","extent":"50","text":"352(2017), 1, Seite 135-184","volume":"352"},"titleAlt":[{"title":"Mathematical physics"}],"origin":[{"dateIssuedKey":"1965","publisher":"Springer","dateIssuedDisp":"1965-","publisherPlace":"Berlin ; Heidelberg"}],"id":{"issn":["1432-0916"],"zdb":["1458931-X"],"eki":["253721628"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"50 S."}],"id":{"doi":["10.1007/s00220-016-2763-z"],"eki":["1571232893"]},"origin":[{"dateIssuedDisp":"May 2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Jirui Guo, Zhentao Lu, Eric Sharpe"]},"recId":"1571232893","language":["eng"],"note":["Published online: 19 October 2016","Gesehen am 20.03.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Quantum sheaf cohomology on Grassmannians","title":"Quantum sheaf cohomology on Grassmannians"}],"person":[{"given":"Jirui","family":"Guo","role":"aut","roleDisplay":"VerfasserIn","display":"Guo, Jirui"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Lu, Zhentao","given":"Zhentao","family":"Lu"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sharpe, Eric","given":"Eric","family":"Sharpe"}]} | ||
| SRT | |a GUOJIRUILUQUANTUMSHE2017 | ||