Quantum sheaf cohomology on Grassmannians

In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo, Jirui (VerfasserIn) , Lu, Zhentao (VerfasserIn) , Sharpe, Eric (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2017
In: Communications in mathematical physics
Year: 2017, Jahrgang: 352, Heft: 1, Pages: 135-184
ISSN:1432-0916
DOI:10.1007/s00220-016-2763-z
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00220-016-2763-z
Verlag, Volltext: https://link.springer.com/article/10.1007/s00220-016-2763-z
Volltext
Verfasserangaben:Jirui Guo, Zhentao Lu, Eric Sharpe

MARC

LEADER 00000caa a2200000 c 4500
001 1571232893
003 DE-627
005 20220814094805.0
007 cr uuu---uuuuu
008 180320s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00220-016-2763-z  |2 doi 
035 |a (DE-627)1571232893 
035 |a (DE-576)501232893 
035 |a (DE-599)BSZ501232893 
035 |a (OCoLC)1340994801 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Guo, Jirui  |e VerfasserIn  |0 (DE-588)1154800474  |0 (DE-627)1016156685  |0 (DE-576)501231471  |4 aut 
245 1 0 |a Quantum sheaf cohomology on Grassmannians  |c Jirui Guo, Zhentao Lu, Eric Sharpe 
264 1 |c May 2017 
300 |a 50 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 19 October 2016 
500 |a Gesehen am 20.03.2018 
520 |a In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring. 
700 1 |a Lu, Zhentao  |e VerfasserIn  |0 (DE-588)1154799484  |0 (DE-627)1016155484  |0 (DE-576)501230769  |4 aut 
700 1 |a Sharpe, Eric  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Communications in mathematical physics  |d Berlin : Springer, 1965  |g 352(2017), 1, Seite 135-184  |h Online-Ressource  |w (DE-627)253721628  |w (DE-600)1458931-X  |w (DE-576)072372184  |x 1432-0916  |7 nnas  |a Quantum sheaf cohomology on Grassmannians 
773 1 8 |g volume:352  |g year:2017  |g number:1  |g pages:135-184  |g extent:50  |a Quantum sheaf cohomology on Grassmannians 
856 4 0 |u http://dx.doi.org/10.1007/s00220-016-2763-z  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00220-016-2763-z  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180320 
993 |a Article 
994 |a 2017 
998 |g 1154799484  |a Lu, Zhentao  |m 1154799484:Lu, Zhentao  |p 2 
999 |a KXP-PPN1571232893  |e 3003738720 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title":"Communications in mathematical physics","title_sort":"Communications in mathematical physics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Quantum sheaf cohomology on GrassmanniansCommunications in mathematical physics","note":["Gesehen am 18.04.08"],"recId":"253721628","language":["eng"],"pubHistory":["1.1965 -"],"part":{"issue":"1","pages":"135-184","year":"2017","extent":"50","text":"352(2017), 1, Seite 135-184","volume":"352"},"titleAlt":[{"title":"Mathematical physics"}],"origin":[{"dateIssuedKey":"1965","publisher":"Springer","dateIssuedDisp":"1965-","publisherPlace":"Berlin ; Heidelberg"}],"id":{"issn":["1432-0916"],"zdb":["1458931-X"],"eki":["253721628"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"50 S."}],"id":{"doi":["10.1007/s00220-016-2763-z"],"eki":["1571232893"]},"origin":[{"dateIssuedDisp":"May 2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Jirui Guo, Zhentao Lu, Eric Sharpe"]},"recId":"1571232893","language":["eng"],"note":["Published online: 19 October 2016","Gesehen am 20.03.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Quantum sheaf cohomology on Grassmannians","title":"Quantum sheaf cohomology on Grassmannians"}],"person":[{"given":"Jirui","family":"Guo","role":"aut","roleDisplay":"VerfasserIn","display":"Guo, Jirui"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Lu, Zhentao","given":"Zhentao","family":"Lu"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sharpe, Eric","given":"Eric","family":"Sharpe"}]} 
SRT |a GUOJIRUILUQUANTUMSHE2017