Quantum sheaf cohomology on Grassmannians

In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo, Jirui (VerfasserIn) , Lu, Zhentao (VerfasserIn) , Sharpe, Eric (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2017
In: Communications in mathematical physics
Year: 2017, Jahrgang: 352, Heft: 1, Pages: 135-184
ISSN:1432-0916
DOI:10.1007/s00220-016-2763-z
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00220-016-2763-z
Verlag, Volltext: https://link.springer.com/article/10.1007/s00220-016-2763-z
Volltext
Verfasserangaben:Jirui Guo, Zhentao Lu, Eric Sharpe
Beschreibung
Zusammenfassung:In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Quantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring.
Beschreibung:Published online: 19 October 2016
Gesehen am 20.03.2018
Beschreibung:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-016-2763-z