Local Borcherds products for unitary groups
For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature (1, n+1), with n >= 1, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products.
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
27 October 2017
|
| In: |
Nagoya mathematical journal
Year: 2017, Pages: 1-31 |
| ISSN: | 2152-6842 |
| DOI: | 10.1017/nmj.2017.37 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1017/nmj.2017.37 Verlag, Volltext: https://www.cambridge.org/core/journals/nagoya-mathematical-journal/article/local-borcherds-products-for-unitary-groups/7A65B66689D2CFCA6CD4851F452D58F3 |
| Verfasserangaben: | Eric Hofmann |
| Zusammenfassung: | For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature (1, n+1), with n >= 1, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products. |
|---|---|
| Beschreibung: | Gesehen am 21.03.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 2152-6842 |
| DOI: | 10.1017/nmj.2017.37 |