Filling sets of curves on punctured surfaces

We study filling sets of simple closed curves on punctured surfaces. In particular we study lower bounds on the cardinality of sets of curves that fill and that pairwise intersect at most k times on surfaces with given genus and number of punctures. We are able to establish orders of growth for even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fanoni, Federica (VerfasserIn) , Parlier, Hugo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2016
In: New York journal of mathematics
Year: 2016, Jahrgang: 22, Pages: 653-666
ISSN:1076-9803
Online-Zugang:Verlag, Volltext: http://nyjm.albany.edu:8000/j/2016/22_653.html
Volltext
Verfasserangaben:Federica Fanoni and Hugo Parlier
Beschreibung
Zusammenfassung:We study filling sets of simple closed curves on punctured surfaces. In particular we study lower bounds on the cardinality of sets of curves that fill and that pairwise intersect at most k times on surfaces with given genus and number of punctures. We are able to establish orders of growth for even k and show that for odd k the orders of growth behave differently. We also study the corresponding questions when one requires that the curves be represented as systoles on hyperbolic complete finite area surfaces.
Beschreibung:Gesehen am 22.03.2017
Beschreibung:Online Resource
ISSN:1076-9803