Graphs of curves on infinite-type surfaces with mapping class group actions

We study when the mapping class group of an infinite-type surface S admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on S. We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action....

Full description

Saved in:
Bibliographic Details
Main Authors: Durham, Matthew (Author) , Fanoni, Federica (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2 Nov 2016
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1611.00841
Get full text
Author Notes:Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis

MARC

LEADER 00000caa a2200000 c 4500
001 1571344683
003 DE-627
005 20220814100612.0
007 cr uuu---uuuuu
008 180322s2016 xx |||||o 00| ||eng c
035 |a (DE-627)1571344683 
035 |a (DE-576)501344683 
035 |a (DE-599)BSZ501344683 
035 |a (OCoLC)1340995001 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Durham, Matthew  |e VerfasserIn  |0 (DE-588)1154969479  |0 (DE-627)1016283644  |0 (DE-576)501344497  |4 aut 
245 1 0 |a Graphs of curves on infinite-type surfaces with mapping class group actions  |c Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis 
264 1 |c 2 Nov 2016 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Last revised 21 Dec 2017 
500 |a Gesehen am 22.03.2018 
520 |a We study when the mapping class group of an infinite-type surface S admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on S. We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action. This allows us to conclude that, as non-locally compact topological groups, many big mapping class groups have nontrivial coarse geometry in the sense of Rosendal. 
650 4 |a Mathematics - Geometric Topology 
650 4 |a Mathematics - Group Theory 
700 1 |a Fanoni, Federica  |d 1986-  |e VerfasserIn  |0 (DE-588)1118634748  |0 (DE-627)872134458  |0 (DE-576)479550034  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2016) Artikel-Nummer 1611.00841, 25 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Graphs of curves on infinite-type surfaces with mapping class group actions 
773 1 8 |g year:2016  |g extent:25  |a Graphs of curves on infinite-type surfaces with mapping class group actions 
856 4 0 |u http://arxiv.org/abs/1611.00841  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180322 
993 |a Article 
994 |a 2016 
998 |g 1118634748  |a Fanoni, Federica  |m 1118634748:Fanoni, Federica  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PF1118634748  |e 110100PF1118634748  |e 110000PF1118634748  |e 110400PF1118634748  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1571344683  |e 3004104474 
BIB |a Y 
JSO |a {"id":{"eki":["1571344683"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"2 Nov 2016"}],"name":{"displayForm":["Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"pubHistory":["1991 -"],"part":{"text":"(2016) Artikel-Nummer 1611.00841, 25 Seiten","extent":"25","year":"2016"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Graphs of curves on infinite-type surfaces with mapping class group actionsArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"physDesc":[{"extent":"25 S."}],"title":[{"title_sort":"Graphs of curves on infinite-type surfaces with mapping class group actions","title":"Graphs of curves on infinite-type surfaces with mapping class group actions"}],"person":[{"roleDisplay":"VerfasserIn","display":"Durham, Matthew","role":"aut","family":"Durham","given":"Matthew"},{"display":"Fanoni, Federica","roleDisplay":"VerfasserIn","role":"aut","family":"Fanoni","given":"Federica"}],"language":["eng"],"recId":"1571344683","note":["Last revised 21 Dec 2017","Gesehen am 22.03.2018"],"type":{"media":"Online-Ressource","bibl":"chapter"}} 
SRT |a DURHAMMATTGRAPHSOFCU2201