Graphs of curves on infinite-type surfaces with mapping class group actions
We study when the mapping class group of an infinite-type surface S admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on S. We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action....
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2 Nov 2016
|
| In: |
Arxiv
|
| Online Access: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1611.00841 |
| Author Notes: | Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571344683 | ||
| 003 | DE-627 | ||
| 005 | 20220814100612.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180322s2016 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1571344683 | ||
| 035 | |a (DE-576)501344683 | ||
| 035 | |a (DE-599)BSZ501344683 | ||
| 035 | |a (OCoLC)1340995001 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Durham, Matthew |e VerfasserIn |0 (DE-588)1154969479 |0 (DE-627)1016283644 |0 (DE-576)501344497 |4 aut | |
| 245 | 1 | 0 | |a Graphs of curves on infinite-type surfaces with mapping class group actions |c Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis |
| 264 | 1 | |c 2 Nov 2016 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Last revised 21 Dec 2017 | ||
| 500 | |a Gesehen am 22.03.2018 | ||
| 520 | |a We study when the mapping class group of an infinite-type surface S admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on S. We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action. This allows us to conclude that, as non-locally compact topological groups, many big mapping class groups have nontrivial coarse geometry in the sense of Rosendal. | ||
| 650 | 4 | |a Mathematics - Geometric Topology | |
| 650 | 4 | |a Mathematics - Group Theory | |
| 700 | 1 | |a Fanoni, Federica |d 1986- |e VerfasserIn |0 (DE-588)1118634748 |0 (DE-627)872134458 |0 (DE-576)479550034 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2016) Artikel-Nummer 1611.00841, 25 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Graphs of curves on infinite-type surfaces with mapping class group actions |
| 773 | 1 | 8 | |g year:2016 |g extent:25 |a Graphs of curves on infinite-type surfaces with mapping class group actions |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1611.00841 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180322 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1118634748 |a Fanoni, Federica |m 1118634748:Fanoni, Federica |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PF1118634748 |e 110100PF1118634748 |e 110000PF1118634748 |e 110400PF1118634748 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN1571344683 |e 3004104474 | ||
| BIB | |a Y | ||
| JSO | |a {"id":{"eki":["1571344683"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"2 Nov 2016"}],"name":{"displayForm":["Matthew Gentry Durham, Federica Fanoni, and Nicholas G. Vlamis"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"pubHistory":["1991 -"],"part":{"text":"(2016) Artikel-Nummer 1611.00841, 25 Seiten","extent":"25","year":"2016"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Graphs of curves on infinite-type surfaces with mapping class group actionsArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"physDesc":[{"extent":"25 S."}],"title":[{"title_sort":"Graphs of curves on infinite-type surfaces with mapping class group actions","title":"Graphs of curves on infinite-type surfaces with mapping class group actions"}],"person":[{"roleDisplay":"VerfasserIn","display":"Durham, Matthew","role":"aut","family":"Durham","given":"Matthew"},{"display":"Fanoni, Federica","roleDisplay":"VerfasserIn","role":"aut","family":"Fanoni","given":"Federica"}],"language":["eng"],"recId":"1571344683","note":["Last revised 21 Dec 2017","Gesehen am 22.03.2018"],"type":{"media":"Online-Ressource","bibl":"chapter"}} | ||
| SRT | |a DURHAMMATTGRAPHSOFCU2201 | ||