ABrox: a user-friendly Python module for approximate Bayesian computation with a focus on model comparison

We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mertens, Ulf K. (VerfasserIn) , Voß, Andreas (VerfasserIn) , Radev, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 8, 2018
In: PLOS ONE
Year: 2018, Jahrgang: 13, Heft: 3
ISSN:1932-6203
DOI:10.1371/journal.pone.0193981
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1371/journal.pone.0193981
Verlag, kostenfrei, Volltext: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193981
Volltext
Verfasserangaben:Ulf Kai Mertens, Andreas Voss, Stefan Radev
Beschreibung
Zusammenfassung:We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.
Beschreibung:Gesehen am 29.03.2018
Beschreibung:Online Resource
ISSN:1932-6203
DOI:10.1371/journal.pone.0193981