Chemical and mechanical impact of silica nanoparticles on the phase transition behavior of phospholipid membranes in theory and experiment

The interaction of nanoparticles (NPs) with lipid membranes is an integral step in the interaction of NPs and living cells. During particle uptake, the membrane has to bend. Due to the nature of their phase diagram, the modulus of compression of these membranes can vary by more than one order of mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Westerhausen, Christoph (VerfasserIn) , Bauer, Alexander (VerfasserIn) , Schneider, Stefan W. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 March 2012
In: Biophysical journal
Year: 2012, Jahrgang: 102, Heft: 5, Pages: 1032-1038
ISSN:1542-0086
DOI:10.1016/j.bpj.2011.12.004
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.bpj.2011.12.004
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0006349511053707
Volltext
Verfasserangaben:C. Westerhausen, F.G. Strobl, R. Herrmann, A.T. Bauer, S.W. Schneider, A. Reller, A. Wixforth, M.F. Schneider
Beschreibung
Zusammenfassung:The interaction of nanoparticles (NPs) with lipid membranes is an integral step in the interaction of NPs and living cells. During particle uptake, the membrane has to bend. Due to the nature of their phase diagram, the modulus of compression of these membranes can vary by more than one order of magnitude, and thus both the thermodynamic and mechanical aspects of the membrane have to be considered simultaneously. We demonstrate that silica NPs have at least two independent effects on the phase transition of phospholipid membranes: 1), a chemical effect resulting from the finite instability of the NPs in water; and 2), a mechanical effect that originates from a bending of the lipid membrane around the NPs. Here, we report on recent experiments that allowed us to clearly distinguish both effects, and present a thermodynamic model that includes the elastic energy of the membranes and correctly predicts our findings both quantitatively and qualitatively.
Beschreibung:Gesehen am 16.04.2018
Beschreibung:Online Resource
ISSN:1542-0086
DOI:10.1016/j.bpj.2011.12.004