Topological invariants of Anosov representations

We define new topological invariants for Anosov representations and study them in detail for maximal representations of the fundamental group of a closed oriented surface Σ into the symplectic group Sp (2n, R). In particular we show that the invariants distinguish connected components of the space o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guichard, Olivier (VerfasserIn) , Wienhard, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 July 2010
In: Journal of topology
Year: 2010, Jahrgang: 3, Heft: 3, Pages: 578-642
ISSN:1753-8424
DOI:10.1112/jtopol/jtq018
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1112/jtopol/jtq018
Verlag, Volltext: https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jtopol/jtq018
Volltext
Verfasserangaben:Guichard Olivier and Wienhard Anna

MARC

LEADER 00000caa a2200000 c 4500
001 1572134674
003 DE-627
005 20220814115802.0
007 cr uuu---uuuuu
008 180418s2010 xx |||||o 00| ||eng c
024 7 |a 10.1112/jtopol/jtq018  |2 doi 
035 |a (DE-627)1572134674 
035 |a (DE-576)502134674 
035 |a (DE-599)BSZ502134674 
035 |a (OCoLC)1341007316 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Guichard, Olivier  |d 1965-  |e VerfasserIn  |0 (DE-588)1144416035  |0 (DE-627)1004760809  |0 (DE-576)495393460  |4 aut 
245 1 0 |a Topological invariants of Anosov representations  |c Guichard Olivier and Wienhard Anna 
264 1 |c 26 July 2010 
300 |a 65 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.04.2018 
520 |a We define new topological invariants for Anosov representations and study them in detail for maximal representations of the fundamental group of a closed oriented surface Σ into the symplectic group Sp (2n, R). In particular we show that the invariants distinguish connected components of the space of symplectic maximal representations other than Hitchin components. Since the invariants behave naturally with respect to the action of the mapping class group of Σ, we obtain from this the number of components of the quotient by the mapping class group action. For specific symplectic maximal representations we compute the invariants explicitly. This allows us to construct nice model representations in all connected components. The construction of model representations is of particular interest for Sp (4, R), because in this case there are ?1??(Σ) connected components in which all representations are Zariski dense and no model representations have been known so far. Finally, we use the model representations to draw conclusions about the holonomy of symplectic maximal representations. 
700 1 |a Wienhard, Anna  |d 1977-  |e VerfasserIn  |0 (DE-588)137817975  |0 (DE-627)696086891  |0 (DE-576)305331280  |4 aut 
773 0 8 |i Enthalten in  |t Journal of topology  |d Hoboken, NJ : Wiley, 2008  |g 3(2010), 3, Seite 578-642  |h Online-Ressource  |w (DE-627)55630022X  |w (DE-600)2402810-1  |w (DE-576)306835541  |x 1753-8424  |7 nnas  |a Topological invariants of Anosov representations 
773 1 8 |g volume:3  |g year:2010  |g number:3  |g pages:578-642  |g extent:65  |a Topological invariants of Anosov representations 
856 4 0 |u http://dx.doi.org/10.1112/jtopol/jtq018  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jtopol/jtq018  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180418 
993 |a Article 
994 |a 2010 
998 |g 137817975  |a Wienhard, Anna  |m 137817975:Wienhard, Anna  |p 2  |y j 
999 |a KXP-PPN1572134674  |e 300637987X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Guichard Olivier and Wienhard Anna"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"26 July 2010"}],"id":{"doi":["10.1112/jtopol/jtq018"],"eki":["1572134674"]},"physDesc":[{"extent":"65 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["London Mathematical Society"]},"origin":[{"dateIssuedDisp":"2008-","dateIssuedKey":"2008","publisher":"Wiley ; Oxford Univ. Press","publisherPlace":"Hoboken, NJ ; Oxford"}],"id":{"issn":["1753-8424"],"doi":["10.1112/(ISSN)1753-8424"],"eki":["55630022X"],"zdb":["2402810-1"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Topological invariants of Anosov representationsJournal of topology","note":["Gesehen am 13.08.10"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"London Mathematical Society"}],"language":["eng"],"recId":"55630022X","pubHistory":["1.2008 -"],"part":{"extent":"65","volume":"3","text":"3(2010), 3, Seite 578-642","pages":"578-642","issue":"3","year":"2010"},"title":[{"title_sort":"Journal of topology","title":"Journal of topology"}]}],"person":[{"family":"Guichard","given":"Olivier","roleDisplay":"VerfasserIn","display":"Guichard, Olivier","role":"aut"},{"role":"aut","display":"Wienhard, Anna","roleDisplay":"VerfasserIn","given":"Anna","family":"Wienhard"}],"title":[{"title":"Topological invariants of Anosov representations","title_sort":"Topological invariants of Anosov representations"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 18.04.2018"],"recId":"1572134674","language":["eng"]} 
SRT |a GUICHARDOLTOPOLOGICA2620