Topological invariants of Anosov representations
We define new topological invariants for Anosov representations and study them in detail for maximal representations of the fundamental group of a closed oriented surface Σ into the symplectic group Sp (2n, R). In particular we show that the invariants distinguish connected components of the space o...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
26 July 2010
|
| In: |
Journal of topology
Year: 2010, Jahrgang: 3, Heft: 3, Pages: 578-642 |
| ISSN: | 1753-8424 |
| DOI: | 10.1112/jtopol/jtq018 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1112/jtopol/jtq018 Verlag, Volltext: https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jtopol/jtq018 |
| Verfasserangaben: | Guichard Olivier and Wienhard Anna |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1572134674 | ||
| 003 | DE-627 | ||
| 005 | 20220814115802.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180418s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/jtopol/jtq018 |2 doi | |
| 035 | |a (DE-627)1572134674 | ||
| 035 | |a (DE-576)502134674 | ||
| 035 | |a (DE-599)BSZ502134674 | ||
| 035 | |a (OCoLC)1341007316 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Guichard, Olivier |d 1965- |e VerfasserIn |0 (DE-588)1144416035 |0 (DE-627)1004760809 |0 (DE-576)495393460 |4 aut | |
| 245 | 1 | 0 | |a Topological invariants of Anosov representations |c Guichard Olivier and Wienhard Anna |
| 264 | 1 | |c 26 July 2010 | |
| 300 | |a 65 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 18.04.2018 | ||
| 520 | |a We define new topological invariants for Anosov representations and study them in detail for maximal representations of the fundamental group of a closed oriented surface Σ into the symplectic group Sp (2n, R). In particular we show that the invariants distinguish connected components of the space of symplectic maximal representations other than Hitchin components. Since the invariants behave naturally with respect to the action of the mapping class group of Σ, we obtain from this the number of components of the quotient by the mapping class group action. For specific symplectic maximal representations we compute the invariants explicitly. This allows us to construct nice model representations in all connected components. The construction of model representations is of particular interest for Sp (4, R), because in this case there are ?1??(Σ) connected components in which all representations are Zariski dense and no model representations have been known so far. Finally, we use the model representations to draw conclusions about the holonomy of symplectic maximal representations. | ||
| 700 | 1 | |a Wienhard, Anna |d 1977- |e VerfasserIn |0 (DE-588)137817975 |0 (DE-627)696086891 |0 (DE-576)305331280 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of topology |d Hoboken, NJ : Wiley, 2008 |g 3(2010), 3, Seite 578-642 |h Online-Ressource |w (DE-627)55630022X |w (DE-600)2402810-1 |w (DE-576)306835541 |x 1753-8424 |7 nnas |a Topological invariants of Anosov representations |
| 773 | 1 | 8 | |g volume:3 |g year:2010 |g number:3 |g pages:578-642 |g extent:65 |a Topological invariants of Anosov representations |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1112/jtopol/jtq018 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jtopol/jtq018 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180418 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 137817975 |a Wienhard, Anna |m 137817975:Wienhard, Anna |p 2 |y j | ||
| 999 | |a KXP-PPN1572134674 |e 300637987X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Guichard Olivier and Wienhard Anna"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"26 July 2010"}],"id":{"doi":["10.1112/jtopol/jtq018"],"eki":["1572134674"]},"physDesc":[{"extent":"65 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["London Mathematical Society"]},"origin":[{"dateIssuedDisp":"2008-","dateIssuedKey":"2008","publisher":"Wiley ; Oxford Univ. Press","publisherPlace":"Hoboken, NJ ; Oxford"}],"id":{"issn":["1753-8424"],"doi":["10.1112/(ISSN)1753-8424"],"eki":["55630022X"],"zdb":["2402810-1"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Topological invariants of Anosov representationsJournal of topology","note":["Gesehen am 13.08.10"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"London Mathematical Society"}],"language":["eng"],"recId":"55630022X","pubHistory":["1.2008 -"],"part":{"extent":"65","volume":"3","text":"3(2010), 3, Seite 578-642","pages":"578-642","issue":"3","year":"2010"},"title":[{"title_sort":"Journal of topology","title":"Journal of topology"}]}],"person":[{"family":"Guichard","given":"Olivier","roleDisplay":"VerfasserIn","display":"Guichard, Olivier","role":"aut"},{"role":"aut","display":"Wienhard, Anna","roleDisplay":"VerfasserIn","given":"Anna","family":"Wienhard"}],"title":[{"title":"Topological invariants of Anosov representations","title_sort":"Topological invariants of Anosov representations"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 18.04.2018"],"recId":"1572134674","language":["eng"]} | ||
| SRT | |a GUICHARDOLTOPOLOGICA2620 | ||