Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders

We examine unsupervised machine learning techniques to learn features that best describe configurations of the two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component analysis over manifold and clustering methods to artificial neural-network-based v...

Full description

Saved in:
Bibliographic Details
Main Author: Wetzel, Sebastian (Author)
Format: Article (Journal)
Language:English
Published: 18 August 2017
In: Physical review
Year: 2017, Volume: 96, Issue: 2, Pages: 022140
ISSN:2470-0053
DOI:10.1103/PhysRevE.96.022140
Online Access:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevE.96.022140
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.96.022140
Get full text
Author Notes:Sebastian J. Wetzel

MARC

LEADER 00000caa a2200000 c 4500
001 1572234946
003 DE-627
005 20220814121424.0
007 cr uuu---uuuuu
008 180423s2017 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevE.96.022140  |2 doi 
035 |a (DE-627)1572234946 
035 |a (DE-576)502234946 
035 |a (DE-599)BSZ502234946 
035 |a (OCoLC)1341007519 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Wetzel, Sebastian  |d 1987-  |e VerfasserIn  |0 (DE-588)1085180069  |0 (DE-627)848860608  |0 (DE-576)456916016  |4 aut 
245 1 0 |a Unsupervised learning of phase transitions  |b from principal component analysis to variational autoencoders  |c Sebastian J. Wetzel 
264 1 |c 18 August 2017 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.04.2018 
520 |a We examine unsupervised machine learning techniques to learn features that best describe configurations of the two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component analysis over manifold and clustering methods to artificial neural-network-based variational autoencoders. They are applied to Monte Carlo-sampled configurations and have, a priori, no knowledge about the Hamiltonian or the order parameter. We find that the most promising algorithms are principal component analysis and variational autoencoders. Their predicted latent parameters correspond to the known order parameters. The latent representations of the models in question are clustered, which makes it possible to identify phases without prior knowledge of their existence. Furthermore, we find that the reconstruction loss function can be used as a universal identifier for phase transitions. 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 96(2017), 2, Seite 022140  |h Online-Ressource  |w (DE-627)846123010  |w (DE-600)2844562-4  |w (DE-576)454423063  |x 2470-0053  |7 nnas  |a Unsupervised learning of phase transitions from principal component analysis to variational autoencoders 
773 1 8 |g volume:96  |g year:2017  |g number:2  |g pages:022140  |g extent:11  |a Unsupervised learning of phase transitions from principal component analysis to variational autoencoders 
856 4 0 |u http://dx.doi.org/10.1103/PhysRevE.96.022140  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevE.96.022140  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180423 
993 |a Article 
994 |a 2017 
998 |g 1085180069  |a Wetzel, Sebastian  |m 1085180069:Wetzel, Sebastian  |d 130000  |d 130300  |e 130000PW1085180069  |e 130300PW1085180069  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j  |y j 
999 |a KXP-PPN1572234946  |e 3006751248 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"18 August 2017"}],"id":{"doi":["10.1103/PhysRevE.96.022140"],"eki":["1572234946"]},"name":{"displayForm":["Sebastian J. Wetzel"]},"physDesc":[{"extent":"11 S."}],"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"part":{"year":"2017","issue":"2","pages":"022140","text":"96(2017), 2, Seite 022140","volume":"96","extent":"11"},"titleAlt":[{"title":"Statistical, nonlinear, and soft matter physics"}],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"recId":"846123010","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics","role":"isb"},{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Unsupervised learning of phase transitions from principal component analysis to variational autoencodersPhysical review","id":{"issn":["2470-0053"],"zdb":["2844562-4"],"eki":["846123010"]},"origin":[{"dateIssuedDisp":"January 2016-","publisher":"Inst.","publisherPlace":"Woodbury, NY"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"subtitle":"from principal component analysis to variational autoencoders","title":"Unsupervised learning of phase transitions","title_sort":"Unsupervised learning of phase transitions"}],"person":[{"given":"Sebastian","family":"Wetzel","role":"aut","roleDisplay":"VerfasserIn","display":"Wetzel, Sebastian"}],"note":["Gesehen am 23.04.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1572234946"} 
SRT |a WETZELSEBAUNSUPERVIS1820