Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile

The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Geiß, Christian (VerfasserIn) , Schauß, Anne (VerfasserIn) , Jokar Arsanjani, Jamal (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Natural hazards
Year: 2016, Jahrgang: 86, Heft: 1, Pages: 81-105
ISSN:1573-0840
DOI:10.1007/s11069-016-2663-8
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s11069-016-2663-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s11069-016-2663-8
Volltext
Verfasserangaben:Christian Geiß, Anne Schauß, Torsten Riedlinger, Stefan Dech, Cecilia Zelaya, Nicolás Guzmán, Mathías A. Hube, Jamal Jokar Arsanjani, Hannes Taubenböck

MARC

LEADER 00000caa a2200000 c 4500
001 1572442166
003 DE-627
005 20220814125011.0
007 cr uuu---uuuuu
008 180427r20172016xx |||||o 00| ||eng c
024 7 |a 10.1007/s11069-016-2663-8  |2 doi 
035 |a (DE-627)1572442166 
035 |a (DE-576)502442166 
035 |a (DE-599)BSZ502442166 
035 |a (OCoLC)1341007945 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Geiß, Christian  |e VerfasserIn  |0 (DE-588)1065064047  |0 (DE-627)815570309  |0 (DE-576)424746778  |4 aut 
245 1 0 |a Joint use of remote sensing data and volunteered geographic information for exposure estimation  |b evidence from Valparaíso, Chile  |c Christian Geiß, Anne Schauß, Torsten Riedlinger, Stefan Dech, Cecilia Zelaya, Nicolás Guzmán, Mathías A. Hube, Jamal Jokar Arsanjani, Hannes Taubenböck 
264 1 |c 2017 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 08 November 2016 
500 |a Gesehen am 27.04.2018 
520 |a The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elements at risk. Considering a high spatiotemporal variability of elements at risk, detailed information is costly in terms of both time and economic resources and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the availability of very-high-resolution satellite images promotes accurate and detailed analysis of exposure over various spatial scales with large-area coverage. In the past, valuable approaches were proposed; however, the design of information extraction procedures with a high level of automatization remains challenging. In this paper, we uniquely combine remote sensing data and volunteered geographic information from the OpenStreetMap project (OSM) (i.e., freely accessible geospatial information compiled by volunteers) for a highly automated estimation of crucial exposure components (i.e., number of buildings and population) with a high level of spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in conjunction with the satellite imagery. This allows for learning a supervised algorithmic model (i.e., rotation forest) in order to extract relevant thematic classes of land use/land cover (LULC) from the satellite imagery. Extracted information is jointly deployed with information from the OSM data to estimate the number of buildings with regression techniques (i.e., a multi-linear model from ordinary least-square optimization and a nonlinear support vector regression model are considered). Analogously, urban LULC information is used in conjunction with OSM data to spatially disaggregate population information. Experimental results were obtained for the city of Valparaíso in Chile. Thereby, we demonstrate the relevance of the approaches by estimating number of affected buildings and population referring to a historical tsunami event. 
534 |c 2016 
700 1 |a Schauß, Anne  |e VerfasserIn  |0 (DE-588)1156807778  |0 (DE-627)1019743344  |0 (DE-576)502448075  |4 aut 
700 1 |a Jokar Arsanjani, Jamal  |e VerfasserIn  |0 (DE-588)1036794601  |0 (DE-627)751695726  |0 (DE-576)38686005X  |4 aut 
773 0 8 |i Enthalten in  |t Natural hazards  |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988  |g 86(2017), 1, Seite 81-105  |h Online-Ressource  |w (DE-627)315621729  |w (DE-600)2017806-2  |w (DE-576)121191710  |x 1573-0840  |7 nnas  |a Joint use of remote sensing data and volunteered geographic information for exposure estimation evidence from Valparaíso, Chile 
773 1 8 |g volume:86  |g year:2017  |g number:1  |g pages:81-105  |g extent:25  |a Joint use of remote sensing data and volunteered geographic information for exposure estimation evidence from Valparaíso, Chile 
856 4 0 |u http://dx.doi.org/10.1007/s11069-016-2663-8  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s11069-016-2663-8  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180427 
993 |a Article 
994 |a 2017 
998 |g 1036794601  |a Jokar Arsanjani, Jamal  |m 1036794601:Jokar Arsanjani, Jamal  |d 120000  |d 120700  |e 120000PJ1036794601  |e 120700PJ1036794601  |k 0/120000/  |k 1/120000/120700/  |p 8 
998 |g 1156807778  |a Schauß, Anne  |m 1156807778:Schauß, Anne  |p 2 
999 |a KXP-PPN1572442166  |e 3007370973 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Christian","family":"Geiß","role":"aut","roleDisplay":"VerfasserIn","display":"Geiß, Christian"},{"roleDisplay":"VerfasserIn","display":"Schauß, Anne","role":"aut","family":"Schauß","given":"Anne"},{"given":"Jamal","family":"Jokar Arsanjani","role":"aut","roleDisplay":"VerfasserIn","display":"Jokar Arsanjani, Jamal"}],"title":[{"title_sort":"Joint use of remote sensing data and volunteered geographic information for exposure estimation","subtitle":"evidence from Valparaíso, Chile","title":"Joint use of remote sensing data and volunteered geographic information for exposure estimation"}],"language":["eng"],"recId":"1572442166","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published online: 08 November 2016","Gesehen am 27.04.2018"],"name":{"displayForm":["Christian Geiß, Anne Schauß, Torsten Riedlinger, Stefan Dech, Cecilia Zelaya, Nicolás Guzmán, Mathías A. Hube, Jamal Jokar Arsanjani, Hannes Taubenböck"]},"id":{"eki":["1572442166"],"doi":["10.1007/s11069-016-2663-8"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"relHost":[{"title":[{"title":"Natural hazards","subtitle":"journal of the International Society for the Prevention and Mitigation of Natural Hazards","title_sort":"Natural hazards"}],"part":{"year":"2017","issue":"1","pages":"81-105","text":"86(2017), 1, Seite 81-105","volume":"86","extent":"25"},"pubHistory":["1.1988/89 -"],"recId":"315621729","language":["eng"],"note":["Gesehen am 08.10.11"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Joint use of remote sensing data and volunteered geographic information for exposure estimation evidence from Valparaíso, ChileNatural hazards","id":{"issn":["1573-0840"],"zdb":["2017806-2"],"eki":["315621729"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1988-","dateIssuedKey":"1988","publisher":"Springer Science + Business Media B.V. ; Kluwer"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"25 S."}]} 
SRT |a GEISSCHRISJOINTUSEOF2017