Fast segmentation from blurred data in 3D fluorescence microscopy

We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids...

Full description

Saved in:
Bibliographic Details
Main Author: Storath, Martin (Author)
Format: Article (Journal)
Language:English
Published: 16 June 2017
In: IEEE transactions on image processing
Year: 2017, Volume: 26, Issue: 10, Pages: 4856-4870
ISSN:1941-0042
Online Access: Get full text
Author Notes:M. Storath, D. Rickert, M. Unser, A. Weinmann

MARC

LEADER 00000caa a22000002c 4500
001 1572491086
003 DE-627
005 20220814125814.0
007 cr uuu---uuuuu
008 180430s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2716843  |2 doi 
035 |a (DE-627)1572491086 
035 |a (DE-576)502491086 
035 |a (DE-599)BSZ502491086 
035 |a (OCoLC)1341007831 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Storath, Martin  |e VerfasserIn  |0 (DE-588)1036903818  |0 (DE-627)751410578  |0 (DE-576)389559830  |4 aut 
245 1 0 |a Fast segmentation from blurred data in 3D fluorescence microscopy  |c M. Storath, D. Rickert, M. Unser, A. Weinmann 
264 1 |c 16 June 2017 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.04.2018 
520 |a We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data. 
650 4 |a 3D images 
650 4 |a 3D Potts model 
650 4 |a 3D wide field fluorescence microscopy data 
650 4 |a deconvolution 
650 4 |a decoupled subproblem 
650 4 |a fluorescence 
650 4 |a GPU 
650 4 |a image deconvolution 
650 4 |a Image reconstruction 
650 4 |a image restoration 
650 4 |a image segmentation 
650 4 |a Microscopy 
650 4 |a non-negativity constraints 
650 4 |a noncubic grid 
650 4 |a optical microscopy 
650 4 |a parallel processing 
650 4 |a parallelization 
650 4 |a piecewise constant Mumford-Shah model 
650 4 |a Potts model 
650 4 |a Three-dimensional displays 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on image processing  |d New York, NY : IEEE, 1992  |g 26(2017), 10, Seite 4856-4870  |h Online-Ressource  |w (DE-627)325162050  |w (DE-600)2034319-X  |w (DE-576)094086281  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g pages:4856-4870  |g extent:15  |a Fast segmentation from blurred data in 3D fluorescence microscopy 
951 |a AR 
992 |a 20180430 
993 |a Article 
994 |a 2017 
998 |g 1036903818  |a Storath, Martin  |m 1036903818:Storath, Martin  |d 700000  |d 708070  |e 700000PS1036903818  |e 708070PS1036903818  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1572491086  |e 3007626994 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 30.04.2018"],"recId":"1572491086","language":["eng"],"person":[{"display":"Storath, Martin","roleDisplay":"VerfasserIn","role":"aut","family":"Storath","given":"Martin"}],"title":[{"title":"Fast segmentation from blurred data in 3D fluorescence microscopy","title_sort":"Fast segmentation from blurred data in 3D fluorescence microscopy"}],"physDesc":[{"extent":"15 S."}],"relHost":[{"id":{"eki":["325162050"],"zdb":["2034319-X"],"issn":["1941-0042"]},"origin":[{"dateIssuedKey":"1992","publisher":"IEEE","dateIssuedDisp":"1992-","publisherPlace":"New York, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"a publication of the IEEE Signal Processing Society","title":"IEEE transactions on image processing","title_sort":"IEEE transactions on image processing"}],"recId":"325162050","language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Institute of Electrical and Electronics Engineers"},{"roleDisplay":"Herausgebendes Organ","display":"IEEE Signal Processing Society","role":"isb"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on image processing","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 10.09.02"],"part":{"extent":"15","text":"26(2017), 10, Seite 4856-4870","volume":"26","issue":"10","pages":"4856-4870","year":"2017"},"titleAlt":[{"title":"Transactions on image processing"}],"pubHistory":["1.1992 -"]}],"name":{"displayForm":["M. Storath, D. Rickert, M. Unser, A. Weinmann"]},"origin":[{"dateIssuedDisp":"16 June 2017","dateIssuedKey":"2017"}],"id":{"doi":["10.1109/TIP.2017.2716843"],"eki":["1572491086"]}} 
SRT |a STORATHMARFASTSEGMEN1620