Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice

Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aloisi, Elisabetta (VerfasserIn) , Tappe-Theodor, Anke (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 October 2017
In: Nature Communications
Year: 2017, Jahrgang: 8
ISSN:2041-1723
DOI:10.1038/s41467-017-01191-2
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1038/s41467-017-01191-2
Volltext
Verfasserangaben:Elisabetta Aloisi, Katy Le Corf, Julien Dupuis, Pei Zhang, Melanie Ginger, Virginie Labrousse, Michela Spatuzza, Matthias Georg Haberl, Lara Costa, Ryuichi Shigemoto, Anke Tappe-Theodor, Filippo Drago, Pier Vincenzo Piazza, Christophe Mulle, Laurent Groc, Lucia Ciranna, Maria Vincenza Catania & Andreas Frick
Beschreibung
Zusammenfassung:Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics.
Beschreibung:Gesehen am 03.05.2018
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-017-01191-2