Pro‐p groups of positive deficiency

Let Γ be a finitely presentable pro?p group with a nontrivial, finitely generated closed normal subgroup N of infinite index. Then def (Γ) ? 1, and if def (Γ) = 1 then Γ is a pro?p duality group of dimension 2, N is a free pro?p group and Γ/N is virtually free. In particular, if the centre of Γ is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hillman, Jonathan (VerfasserIn) , Schmidt, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 October 2008
In: Bulletin of the London Mathematical Society
Year: 2008, Jahrgang: 40, Heft: 6, Pages: 1065-1069
ISSN:1469-2120
DOI:10.1112/blms/bdn089
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1112/blms/bdn089
Verlag, Volltext: https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms/bdn089
Volltext
Verfasserangaben:Jonathan A. Hillman and Alexander Schmidt
Beschreibung
Zusammenfassung:Let Γ be a finitely presentable pro?p group with a nontrivial, finitely generated closed normal subgroup N of infinite index. Then def (Γ) ? 1, and if def (Γ) = 1 then Γ is a pro?p duality group of dimension 2, N is a free pro?p group and Γ/N is virtually free. In particular, if the centre of Γ is nontrivial and def (Γ) ? 1, then def (Γ) = 1, cd G ? 2 and Γ is virtually a direct product F ? ?p, with F a finitely generated free pro?p group.
Beschreibung:Gesehen am 04.05.2018
Beschreibung:Online Resource
ISSN:1469-2120
DOI:10.1112/blms/bdn089