Exact many-body wave function and properties of trapped bosons in the infinite-particle limit

The emphasis of this work is on the computation of physical properties as well as of the wave function of interacting bosons in a trap potential. Many-body perturbation theory is employed to study the leading term of these quantities for finite numbers of bosons, and exact solutions are aimed at in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cederbaum, Lorenz S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 July 2017
In: Physical review
Year: 2017, Jahrgang: 96, Heft: 1, Pages: ?
ISSN:2469-9934
DOI:10.1103/PhysRevA.96.013615
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevA.96.013615
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.96.013615
Volltext
Verfasserangaben:Lorenz S. Cederbaum

MARC

LEADER 00000caa a2200000 c 4500
001 1574002252
003 DE-627
005 20230427042850.0
007 cr uuu---uuuuu
008 180507s2017 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevA.96.013615  |2 doi 
035 |a (DE-627)1574002252 
035 |a (DE-576)504002252 
035 |a (DE-599)BSZ504002252 
035 |a (OCoLC)1341009238 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Cederbaum, Lorenz S.  |d 1946-  |e VerfasserIn  |0 (DE-588)172484952  |0 (DE-627)697422798  |0 (DE-576)133346145  |4 aut 
245 1 0 |a Exact many-body wave function and properties of trapped bosons in the infinite-particle limit  |c Lorenz S. Cederbaum 
264 1 |c 13 July 2017 
300 |a ? 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.05.2018 
520 |a The emphasis of this work is on the computation of physical properties as well as of the wave function of interacting bosons in a trap potential. Many-body perturbation theory is employed to study the leading term of these quantities for finite numbers of bosons, and exact solutions are aimed at in the infinite-particle limit. As discussed before, a suitable starting point is the second-quantized Hamiltonian represented in the basis of destruction and creation operators of its own mean-field potential. This choice leads to expressions for the perturbation terms of all quantities which exhibit a very weak dependence on the particle number. Importantly, when applying ideas similar to Bogoliubov's, the Hamiltonian can be reduced in the infinite-particle limit to a much simplified form which is a priori particle-number conserving. The resulting phonon Hamiltonian is diagonalizable by a linear transformation for which an explicit eigenvalue equation is given. Physical properties can be expressed explicitly by elements of this transformation, and of particular relevance is that the particle-number-conserving wave functions of the original many-boson system can be reconstructed using recursion relations. The reconstruction of the particle-conserving wave function from the phonon Hamiltonian can also be used to assess when the infinite-particle limit is reached in practice for finite trapped condensates. Two applications are discussed in detail. For one of them, an exact solution is known which is found, in the infinite-particle limit, to exactly coincide with that of the phonon Hamiltonian. In both examples expressions for the properties are given in closed form. The physics behind the phonon Hamiltonian and its physical properties is discussed. 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 96(2017,1) Artikel-Nummer 013615  |h Online-Ressource  |w (DE-627)845695479  |w (DE-600)2844156-4  |w (DE-576)454495854  |x 2469-9934  |7 nnas  |a Exact many-body wave function and properties of trapped bosons in the infinite-particle limit 
773 1 8 |g volume:96  |g year:2017  |g number:1  |g pages:?  |g extent:?  |a Exact many-body wave function and properties of trapped bosons in the infinite-particle limit 
856 4 0 |u http://dx.doi.org/10.1103/PhysRevA.96.013615  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevA.96.013615  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180507 
993 |a Article 
994 |a 2017 
998 |g 172484952  |a Cederbaum, Lorenz S.  |m 172484952:Cederbaum, Lorenz S.  |d 120000  |d 120300  |e 120000PC172484952  |e 120300PC172484952  |k 0/120000/  |k 1/120000/120300/  |p 1  |x j  |y j 
999 |a KXP-PPN1574002252  |e 3008065988 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1574002252","relHost":[{"disp":"Exact many-body wave function and properties of trapped bosons in the infinite-particle limitPhysical review","physDesc":[{"extent":"Online-Ressource"}],"part":{"extent":"?","volume":"96","issue":"1","pages":"?","year":"2017","text":"96(2017,1) Artikel-Nummer 013615"},"title":[{"title_sort":"Physical review","title":"Physical review"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"corporate":[{"role":"isb","display":"American Institute of Physics"},{"display":"American Physical Society","role":"isb"}],"id":{"issn":["2469-9934"],"zdb":["2844156-4"],"eki":["845695479"]},"language":["eng"],"name":{"displayForm":["publ. by The American Institute of Physics"]},"recId":"845695479","pubHistory":["Vol. 93, Iss. 1, January 2016-"],"origin":[{"publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","dateIssuedDisp":"2016-","publisher":"Inst."}]}],"origin":[{"dateIssuedDisp":"13 July 2017","dateIssuedKey":"2017"}],"note":["Gesehen am 07.05.2018"],"person":[{"family":"Cederbaum","role":"aut","display":"Cederbaum, Lorenz S.","given":"Lorenz S."}],"title":[{"title_sort":"Exact many-body wave function and properties of trapped bosons in the infinite-particle limit","title":"Exact many-body wave function and properties of trapped bosons in the infinite-particle limit"}],"physDesc":[{"extent":"? S."}],"id":{"eki":["1574002252"],"doi":["10.1103/PhysRevA.96.013615"]},"language":["eng"],"name":{"displayForm":["Lorenz S. Cederbaum"]},"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a CEDERBAUMLEXACTMANYB1320