State-dependent neutral delay equations from population dynamics
A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The r...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
13 August 2014
|
| In: |
Journal of mathematical biology
Year: 2014, Jahrgang: 69, Heft: 4, Pages: 1027-1056 |
| ISSN: | 1432-1416 |
| DOI: | 10.1007/s00285-014-0821-8 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00285-014-0821-8 Verlag, Volltext: https://link.springer.com/article/10.1007/s00285-014-0821-8 |
| Verfasserangaben: | M.V. Barbarossa, K.P. Hadeler, C. Kuttler |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1574128744 | ||
| 003 | DE-627 | ||
| 005 | 20220814133314.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180507s2014 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00285-014-0821-8 |2 doi | |
| 035 | |a (DE-627)1574128744 | ||
| 035 | |a (DE-576)504128744 | ||
| 035 | |a (DE-599)BSZ504128744 | ||
| 035 | |a (OCoLC)1341009281 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Barbarossa, Maria Vittoria |e VerfasserIn |0 (DE-588)1036989054 |0 (DE-627)75171268X |0 (DE-576)390788147 |4 aut | |
| 245 | 1 | 0 | |a State-dependent neutral delay equations from population dynamics |c M.V. Barbarossa, K.P. Hadeler, C. Kuttler |
| 264 | 1 | |c 13 August 2014 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.05.2018 | ||
| 520 | |a A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE—shift system) is a limiting case of a system of two standard delay equations. | ||
| 700 | 1 | |a Hadeler, Karl-Peter |d 1936-2017 |e VerfasserIn |0 (DE-588)107953366 |0 (DE-627)478088876 |0 (DE-576)161259103 |4 aut | |
| 700 | 1 | |a Kuttler, Christina |d 1973- |e VerfasserIn |0 (DE-588)122061705 |0 (DE-627)081712413 |0 (DE-576)293072272 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of mathematical biology |d Berlin : Springer, 1974 |g 69(2014), 4, Seite 1027-1056 |h Online-Ressource |w (DE-627)242065082 |w (DE-600)1421292-4 |w (DE-576)065026489 |x 1432-1416 |7 nnas |a State-dependent neutral delay equations from population dynamics |
| 773 | 1 | 8 | |g volume:69 |g year:2014 |g number:4 |g pages:1027-1056 |g extent:30 |a State-dependent neutral delay equations from population dynamics |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00285-014-0821-8 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00285-014-0821-8 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180507 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1036989054 |a Barbarossa, Maria Vittoria |m 1036989054:Barbarossa, Maria Vittoria |p 1 |x j | ||
| 999 | |a KXP-PPN1574128744 |e 3008099424 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"eki":["1574128744"],"doi":["10.1007/s00285-014-0821-8"]},"origin":[{"dateIssuedDisp":"13 August 2014","dateIssuedKey":"2014"}],"name":{"displayForm":["M.V. Barbarossa, K.P. Hadeler, C. Kuttler"]},"relHost":[{"title":[{"title":"Journal of mathematical biology","title_sort":"Journal of mathematical biology"}],"language":["eng"],"recId":"242065082","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"State-dependent neutral delay equations from population dynamicsJournal of mathematical biology","note":["Gesehen am 17.10.05"],"part":{"extent":"30","text":"69(2014), 4, Seite 1027-1056","volume":"69","issue":"4","pages":"1027-1056","year":"2014"},"titleAlt":[{"title":"Mathematical biology"}],"pubHistory":["1.1974/75 -"],"id":{"issn":["1432-1416"],"zdb":["1421292-4"],"eki":["242065082"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg ; New York","dateIssuedDisp":"1974-","dateIssuedKey":"1974","publisher":"Springer"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"30 S."}],"title":[{"title_sort":"State-dependent neutral delay equations from population dynamics","title":"State-dependent neutral delay equations from population dynamics"}],"person":[{"given":"Maria Vittoria","family":"Barbarossa","role":"aut","roleDisplay":"VerfasserIn","display":"Barbarossa, Maria Vittoria"},{"role":"aut","display":"Hadeler, Karl-Peter","roleDisplay":"VerfasserIn","given":"Karl-Peter","family":"Hadeler"},{"given":"Christina","family":"Kuttler","role":"aut","display":"Kuttler, Christina","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"1574128744","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 07.05.2018"]} | ||
| SRT | |a BARBAROSSASTATEDEPEN1320 | ||