Reexamination of the Runge-Gross action-integral functional
The density-based action-integral functional introduced by Runge and Gross [Phys. Rev. Lett. 52, 997 (1984)] in their foundation of time-dependent density-functional theory is reexamined. Based on a simple expansion of the original definition, it becomes apparent that the action-integral functional...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
26 July 2012)
|
| In: |
Physical review. A, Atomic, molecular, and optical physics
Year: 2012, Jahrgang: 86, Heft: 1 |
| ISSN: | 1094-1622 |
| DOI: | 10.1103/PhysRevA.86.012514 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevA.86.012514 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.86.012514 |
| Verfasserangaben: | J. Schirmer |
| Zusammenfassung: | The density-based action-integral functional introduced by Runge and Gross [Phys. Rev. Lett. 52, 997 (1984)] in their foundation of time-dependent density-functional theory is reexamined. Based on a simple expansion of the original definition, it becomes apparent that the action-integral functional is a trivial construct and, moreover, nonstationary. It cannot be used to establish equations of motion for the time evolution of quantum systems at the density-function level. |
|---|---|
| Beschreibung: | Gesehen am 08.05.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1094-1622 |
| DOI: | 10.1103/PhysRevA.86.012514 |