Distance correlation coefficients for Lancaster distributions
We consider the problem of calculating distance correlation coefficients between random vectors whose joint distributions belong to the class of Lancaster distributions. We derive under mild convergence conditions a general series representation for the distance covariance for these distributions. T...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
February 2017
|
| In: |
Journal of multivariate analysis
Year: 2016, Jahrgang: 154, Pages: 19-39 |
| ISSN: | 1095-7243 |
| DOI: | 10.1016/j.jmva.2016.10.012 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.jmva.2016.10.012 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0047259X16301245 |
| Verfasserangaben: | Johannes Dueck, Dominic Edelmann, and Donald Richards |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1575491559 | ||
| 003 | DE-627 | ||
| 005 | 20220814145447.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180524r20172016xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jmva.2016.10.012 |2 doi | |
| 035 | |a (DE-627)1575491559 | ||
| 035 | |a (DE-576)505491559 | ||
| 035 | |a (DE-599)BSZ505491559 | ||
| 035 | |a (OCoLC)1341010108 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Dueck, Johannes |e VerfasserIn |0 (DE-588)1069854727 |0 (DE-627)82286617X |0 (DE-576)429551150 |4 aut | |
| 245 | 1 | 0 | |a Distance correlation coefficients for Lancaster distributions |c Johannes Dueck, Dominic Edelmann, and Donald Richards |
| 264 | 1 | |c February 2017 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 31 October 2016 | ||
| 500 | |a Gesehen am 24.05.2018 | ||
| 520 | |a We consider the problem of calculating distance correlation coefficients between random vectors whose joint distributions belong to the class of Lancaster distributions. We derive under mild convergence conditions a general series representation for the distance covariance for these distributions. To illustrate the general theory, we apply the series representation to derive explicit expressions for the distance covariance and distance correlation coefficients for the bivariate normal distribution and its generalizations of Lancaster type, the multivariate normal distributions, and the bivariate gamma, Poisson, and negative binomial distributions which are of Lancaster type. | ||
| 534 | |c 2016 | ||
| 650 | 4 | |a Affine invariance | |
| 650 | 4 | |a Bivariate gamma distribution | |
| 650 | 4 | |a Bivariate negative binomial distribution | |
| 650 | 4 | |a Bivariate normal distribution | |
| 650 | 4 | |a Bivariate Poisson distribution | |
| 650 | 4 | |a Characteristic function | |
| 650 | 4 | |a Distance correlation coefficient | |
| 650 | 4 | |a Lancaster distributions | |
| 650 | 4 | |a Multivariate normal distribution | |
| 700 | 1 | |a Edelmann, Dominic |e VerfasserIn |0 (DE-588)1074380223 |0 (DE-627)832085499 |0 (DE-576)442634854 |4 aut | |
| 700 | 1 | |a Richards, Donald |d 1955- |e VerfasserIn |0 (DE-588)1160066183 |0 (DE-627)1023175134 |0 (DE-576)505490927 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of multivariate analysis |d [Amsterdam] : Elsevier, 1971 |g 154(2017), Seite 19-39 |h Online-Ressource |w (DE-627)267328141 |w (DE-600)1469773-7 |w (DE-576)103373233 |x 1095-7243 |7 nnas |a Distance correlation coefficients for Lancaster distributions |
| 773 | 1 | 8 | |g volume:154 |g year:2017 |g pages:19-39 |g extent:21 |a Distance correlation coefficients for Lancaster distributions |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.jmva.2016.10.012 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0047259X16301245 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180524 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1074380223 |a Edelmann, Dominic |m 1074380223:Edelmann, Dominic |d 110000 |e 110000PE1074380223 |k 0/110000/ |p 2 | ||
| 998 | |g 1069854727 |a Dueck, Johannes |m 1069854727:Dueck, Johannes |p 1 |x j | ||
| 999 | |a KXP-PPN1575491559 |e 3010137745 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"display":"Dueck, Johannes","given":"Johannes","family":"Dueck","role":"aut"},{"given":"Dominic","display":"Edelmann, Dominic","family":"Edelmann","role":"aut"},{"display":"Richards, Donald","given":"Donald","family":"Richards","role":"aut"}],"recId":"1575491559","note":["Available online 31 October 2016","Gesehen am 24.05.2018"],"language":["eng"],"name":{"displayForm":["Johannes Dueck, Dominic Edelmann, and Donald Richards"]},"relHost":[{"title":[{"title":"Journal of multivariate analysis","subtitle":"JMVA","title_sort":"Journal of multivariate analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1469773-7"],"issn":["1095-7243"],"eki":["267328141"]},"origin":[{"dateIssuedKey":"2001","publisherPlace":"[Amsterdam] ; Orlando, FL","publisher":"Elsevier ; Academic Press","dateIssuedDisp":"2001-"}],"recId":"267328141","disp":"Distance correlation coefficients for Lancaster distributionsJournal of multivariate analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Multivariate analysis"},{"title":"JMVA"}],"language":["eng"],"part":{"text":"154(2017), Seite 19-39","pages":"19-39","extent":"21","year":"2017","volume":"154"},"pubHistory":["1.1971 - 102.2011; Vol. 103.2012 -"],"note":["Gesehen am 20.06.2023"]}],"origin":[{"dateIssuedDisp":"February 2017","dateIssuedKey":"2017"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Distance correlation coefficients for Lancaster distributions","title":"Distance correlation coefficients for Lancaster distributions"}],"id":{"eki":["1575491559"],"doi":["10.1016/j.jmva.2016.10.012"]},"physDesc":[{"extent":"21 S."}]} | ||
| SRT | |a DUECKJOHANDISTANCECO2017 | ||