Nonparametric inference for queueing networks of geom X/G/∞ queues in discrete time

We study nonparametric estimation problems for discrete-time stochastic networks of Geom X/G/∞ queues. We assume that we are only able to observe the external arrival and external departure processes at the nodes over a stretch of time. Based on such incomplete information of the system, we aim to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Edelmann, Dominic (VerfasserIn) , Wichelhaus, Cornelia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 2014
In: Advances in applied probability
Year: 2014, Jahrgang: 46, Heft: 3, Pages: 790-811
ISSN:1475-6064
DOI:10.1239/aap/1409319560
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1239/aap/1409319560
Verlag, Volltext: https://www.cambridge.org/core/journals/advances-in-applied-probability/article/nonparametric-inference-for-queueing-networks-of-geom-x-g-queues-in-discrete-time/662259D2C455B6A46B67FD4151F644BE
Volltext
Verfasserangaben:Dominic Edelmann and Cornelia Wichelhaus
Beschreibung
Zusammenfassung:We study nonparametric estimation problems for discrete-time stochastic networks of Geom X/G/∞ queues. We assume that we are only able to observe the external arrival and external departure processes at the nodes over a stretch of time. Based on such incomplete information of the system, we aim to construct estimators for the unknown general service time distributions at the nodes without imposing any parametric condition. We propose two different estimation approaches. The first approach is based on the construction of a so-called sequence of differences, and a crucial relation between the expected number of external departures at a node and specific sojourn time distributions in the network. The second approach directly utilizes the structure of the cross-covariance functions between external arrival and departure processes at the nodes. Both methods lead to deconvolution problems which we solve explicitly. A detailed simulation study illustrates the numerical performances of our estimators and shows their advantages and disadvantages.
Beschreibung:Published online: 22 February 2016
Im Titel erscheint das X hochgestellt
Gesehen am 24.05.2018
Beschreibung:Online Resource
ISSN:1475-6064
DOI:10.1239/aap/1409319560