Quantitative Breuer-Major theorems
We consider sequences of random variables of the type Sn=n−1/2∑k=1n{f(Xk)−E[f(Xk)]}, n≥1, where X=(Xk)k∈Z is a d-dimensional Gaussian process and f:Rd→R is a measurable function. It is known that, under certain conditions on f and the covariance function r of X, Sn converges in distribution to a nor...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 2011
|
| In: |
Stochastic processes and their applications
Year: 2011, Jahrgang: 121, Heft: 4, Pages: 793-812 |
| ISSN: | 1879-209X |
| DOI: | 10.1016/j.spa.2010.12.006 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.spa.2010.12.006 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0304414910002917 |
| Verfasserangaben: | Ivan Nourdin, Giovanni Peccati, Mark Podolskij |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1575817314 | ||
| 003 | DE-627 | ||
| 005 | 20220814151008.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180529s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.spa.2010.12.006 |2 doi | |
| 035 | |a (DE-627)1575817314 | ||
| 035 | |a (DE-576)505817314 | ||
| 035 | |a (DE-599)BSZ505817314 | ||
| 035 | |a (OCoLC)1341009978 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Nourdin, Ivan |d 1978- |e VerfasserIn |0 (DE-588)1023866684 |0 (DE-627)718618874 |0 (DE-576)367566176 |4 aut | |
| 245 | 1 | 0 | |a Quantitative Breuer-Major theorems |c Ivan Nourdin, Giovanni Peccati, Mark Podolskij |
| 264 | 1 | |c April 2011 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online: 22 December 2010 | ||
| 500 | |a Gesehen am 29.05.2018 | ||
| 520 | |a We consider sequences of random variables of the type Sn=n−1/2∑k=1n{f(Xk)−E[f(Xk)]}, n≥1, where X=(Xk)k∈Z is a d-dimensional Gaussian process and f:Rd→R is a measurable function. It is known that, under certain conditions on f and the covariance function r of X, Sn converges in distribution to a normal variable S. In the present paper we derive several explicit upper bounds for quantities of the type |E[h(Sn)]−E[h(S)]|, where h is a sufficiently smooth test function. Our methods are based on Malliavin calculus, on interpolation techniques and on the Stein’s method for normal approximation. The bounds deduced in our paper depend only on V ar[f(X1)] and on simple infinite series involving the components of r. In particular, our results generalize and refine some classic CLTs given by Breuer and Major, Giraitis and Surgailis, and Arcones, concerning the normal approximation of partial sums associated with Gaussian-subordinated time series. | ||
| 650 | 4 | |a Berry-Esseen bounds | |
| 650 | 4 | |a Breuer-Major central limit theorems | |
| 650 | 4 | |a Gaussian processes | |
| 650 | 4 | |a Interpolation | |
| 650 | 4 | |a Malliavin calculus | |
| 650 | 4 | |a Stein’s method | |
| 700 | 1 | |a Peccati, Giovanni |d 1975- |e VerfasserIn |0 (DE-588)1018525807 |0 (DE-627)690624069 |0 (DE-576)335730736 |4 aut | |
| 700 | 1 | |a Podolskij, Mark |d 1979- |e VerfasserIn |0 (DE-588)131883909 |0 (DE-627)51596252X |0 (DE-576)298814277 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Stochastic processes and their applications |d Amsterdam [u.a.] : Elsevier, 1973 |g 121(2011), 4, Seite 793-812 |h Online-Ressource |w (DE-627)266886221 |w (DE-600)1468492-5 |w (DE-576)07942015X |x 1879-209X |7 nnas |a Quantitative Breuer-Major theorems |
| 773 | 1 | 8 | |g volume:121 |g year:2011 |g number:4 |g pages:793-812 |g extent:20 |a Quantitative Breuer-Major theorems |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.spa.2010.12.006 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0304414910002917 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180529 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 131883909 |a Podolskij, Mark |m 131883909:Podolskij, Mark |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PP131883909 |e 110200PP131883909 |e 110000PP131883909 |e 110400PP131883909 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 3 |y j | ||
| 999 | |a KXP-PPN1575817314 |e 3010632002 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Ivan Nourdin, Giovanni Peccati, Mark Podolskij"]},"id":{"doi":["10.1016/j.spa.2010.12.006"],"eki":["1575817314"]},"origin":[{"dateIssuedDisp":"April 2011","dateIssuedKey":"2011"}],"relHost":[{"recId":"266886221","language":["eng"],"note":["Gesehen am 12.07.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Quantitative Breuer-Major theoremsStochastic processes and their applications","part":{"extent":"20","volume":"121","text":"121(2011), 4, Seite 793-812","pages":"793-812","issue":"4","year":"2011"},"pubHistory":["Volume 1, issue 1 (January 1973)-"],"title":[{"title":"Stochastic processes and their applications","title_sort":"Stochastic processes and their applications"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["266886221"],"zdb":["1468492-5"],"issn":["1879-209X"]},"origin":[{"dateIssuedDisp":"1973-","dateIssuedKey":"1973","publisher":"Elsevier","publisherPlace":"Amsterdam [u.a.]"}]}],"physDesc":[{"extent":"20 S."}],"person":[{"display":"Nourdin, Ivan","roleDisplay":"VerfasserIn","role":"aut","family":"Nourdin","given":"Ivan"},{"family":"Peccati","given":"Giovanni","roleDisplay":"VerfasserIn","display":"Peccati, Giovanni","role":"aut"},{"role":"aut","display":"Podolskij, Mark","roleDisplay":"VerfasserIn","given":"Mark","family":"Podolskij"}],"title":[{"title":"Quantitative Breuer-Major theorems","title_sort":"Quantitative Breuer-Major theorems"}],"recId":"1575817314","language":["eng"],"note":["Available online: 22 December 2010","Gesehen am 29.05.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} | ||
| SRT | |a NOURDINIVAQUANTITATI2011 | ||