Quantitative Breuer-Major theorems

We consider sequences of random variables of the type Sn=n−1/2∑k=1n{f(Xk)−E[f(Xk)]}, n≥1, where X=(Xk)k∈Z is a d-dimensional Gaussian process and f:Rd→R is a measurable function. It is known that, under certain conditions on f and the covariance function r of X, Sn converges in distribution to a nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nourdin, Ivan (VerfasserIn) , Peccati, Giovanni (VerfasserIn) , Podolskij, Mark (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2011
In: Stochastic processes and their applications
Year: 2011, Jahrgang: 121, Heft: 4, Pages: 793-812
ISSN:1879-209X
DOI:10.1016/j.spa.2010.12.006
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.spa.2010.12.006
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0304414910002917
Volltext
Verfasserangaben:Ivan Nourdin, Giovanni Peccati, Mark Podolskij

MARC

LEADER 00000caa a2200000 c 4500
001 1575817314
003 DE-627
005 20220814151008.0
007 cr uuu---uuuuu
008 180529s2011 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.spa.2010.12.006  |2 doi 
035 |a (DE-627)1575817314 
035 |a (DE-576)505817314 
035 |a (DE-599)BSZ505817314 
035 |a (OCoLC)1341009978 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Nourdin, Ivan  |d 1978-  |e VerfasserIn  |0 (DE-588)1023866684  |0 (DE-627)718618874  |0 (DE-576)367566176  |4 aut 
245 1 0 |a Quantitative Breuer-Major theorems  |c Ivan Nourdin, Giovanni Peccati, Mark Podolskij 
264 1 |c April 2011 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online: 22 December 2010 
500 |a Gesehen am 29.05.2018 
520 |a We consider sequences of random variables of the type Sn=n−1/2∑k=1n{f(Xk)−E[f(Xk)]}, n≥1, where X=(Xk)k∈Z is a d-dimensional Gaussian process and f:Rd→R is a measurable function. It is known that, under certain conditions on f and the covariance function r of X, Sn converges in distribution to a normal variable S. In the present paper we derive several explicit upper bounds for quantities of the type |E[h(Sn)]−E[h(S)]|, where h is a sufficiently smooth test function. Our methods are based on Malliavin calculus, on interpolation techniques and on the Stein’s method for normal approximation. The bounds deduced in our paper depend only on V ar[f(X1)] and on simple infinite series involving the components of r. In particular, our results generalize and refine some classic CLTs given by Breuer and Major, Giraitis and Surgailis, and Arcones, concerning the normal approximation of partial sums associated with Gaussian-subordinated time series. 
650 4 |a Berry-Esseen bounds 
650 4 |a Breuer-Major central limit theorems 
650 4 |a Gaussian processes 
650 4 |a Interpolation 
650 4 |a Malliavin calculus 
650 4 |a Stein’s method 
700 1 |a Peccati, Giovanni  |d 1975-  |e VerfasserIn  |0 (DE-588)1018525807  |0 (DE-627)690624069  |0 (DE-576)335730736  |4 aut 
700 1 |a Podolskij, Mark  |d 1979-  |e VerfasserIn  |0 (DE-588)131883909  |0 (DE-627)51596252X  |0 (DE-576)298814277  |4 aut 
773 0 8 |i Enthalten in  |t Stochastic processes and their applications  |d Amsterdam [u.a.] : Elsevier, 1973  |g 121(2011), 4, Seite 793-812  |h Online-Ressource  |w (DE-627)266886221  |w (DE-600)1468492-5  |w (DE-576)07942015X  |x 1879-209X  |7 nnas  |a Quantitative Breuer-Major theorems 
773 1 8 |g volume:121  |g year:2011  |g number:4  |g pages:793-812  |g extent:20  |a Quantitative Breuer-Major theorems 
856 4 0 |u http://dx.doi.org/10.1016/j.spa.2010.12.006  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0304414910002917  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180529 
993 |a Article 
994 |a 2011 
998 |g 131883909  |a Podolskij, Mark  |m 131883909:Podolskij, Mark  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PP131883909  |e 110200PP131883909  |e 110000PP131883909  |e 110400PP131883909  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
999 |a KXP-PPN1575817314  |e 3010632002 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Ivan Nourdin, Giovanni Peccati, Mark Podolskij"]},"id":{"doi":["10.1016/j.spa.2010.12.006"],"eki":["1575817314"]},"origin":[{"dateIssuedDisp":"April 2011","dateIssuedKey":"2011"}],"relHost":[{"recId":"266886221","language":["eng"],"note":["Gesehen am 12.07.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Quantitative Breuer-Major theoremsStochastic processes and their applications","part":{"extent":"20","volume":"121","text":"121(2011), 4, Seite 793-812","pages":"793-812","issue":"4","year":"2011"},"pubHistory":["Volume 1, issue 1 (January 1973)-"],"title":[{"title":"Stochastic processes and their applications","title_sort":"Stochastic processes and their applications"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["266886221"],"zdb":["1468492-5"],"issn":["1879-209X"]},"origin":[{"dateIssuedDisp":"1973-","dateIssuedKey":"1973","publisher":"Elsevier","publisherPlace":"Amsterdam [u.a.]"}]}],"physDesc":[{"extent":"20 S."}],"person":[{"display":"Nourdin, Ivan","roleDisplay":"VerfasserIn","role":"aut","family":"Nourdin","given":"Ivan"},{"family":"Peccati","given":"Giovanni","roleDisplay":"VerfasserIn","display":"Peccati, Giovanni","role":"aut"},{"role":"aut","display":"Podolskij, Mark","roleDisplay":"VerfasserIn","given":"Mark","family":"Podolskij"}],"title":[{"title":"Quantitative Breuer-Major theorems","title_sort":"Quantitative Breuer-Major theorems"}],"recId":"1575817314","language":["eng"],"note":["Available online: 22 December 2010","Gesehen am 29.05.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a NOURDINIVAQUANTITATI2011