Multipower variation for Brownian semistationary processes
In this paper we study the asymptotic behaviour of power and multipower variations of processes Y: Yt = ∫−∞t g(t − s)σsW(ds) + Zt, where g : (0, ∞) → ℝ is deterministic, σ > 0 is a random process, W is the stochastic Wiener measure and Z is a stochastic process in the nature of a drift term. Proc...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
4 November 2011
|
| In: |
Bernoulli
Year: 2011, Jahrgang: 17, Heft: 4, Pages: 1159-1194 |
| ISSN: | 1573-9759 |
| DOI: | 10.3150/10-BEJ316 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.3150/10-BEJ316 Verlag, Volltext: http://projecteuclid.org/euclid.bj/1320417500 |
| Verfasserangaben: | Ole E. Barndorff-Nielsen, José Manuel Corcuera and Mark Podolskij |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1575818256 | ||
| 003 | DE-627 | ||
| 005 | 20220814151029.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180529s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3150/10-BEJ316 |2 doi | |
| 035 | |a (DE-627)1575818256 | ||
| 035 | |a (DE-576)505818256 | ||
| 035 | |a (DE-599)BSZ505818256 | ||
| 035 | |a (OCoLC)1341010203 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Barndorff-Nielsen, Ole E. |d 1935-2022 |e VerfasserIn |0 (DE-588)123060915 |0 (DE-627)082323178 |0 (DE-576)160173906 |4 aut | |
| 245 | 1 | 0 | |a Multipower variation for Brownian semistationary processes |c Ole E. Barndorff-Nielsen, José Manuel Corcuera and Mark Podolskij |
| 264 | 1 | |c 4 November 2011 | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.05.2018 | ||
| 520 | |a In this paper we study the asymptotic behaviour of power and multipower variations of processes Y: Yt = ∫−∞t g(t − s)σsW(ds) + Zt, where g : (0, ∞) → ℝ is deterministic, σ > 0 is a random process, W is the stochastic Wiener measure and Z is a stochastic process in the nature of a drift term. Processes of this type serve, in particular, to model data of velocity increments of a fluid in a turbulence regime with spot intermittency σ. The purpose of this paper is to determine the probabilistic limit behaviour of the (multi)power variations of Y as a basis for studying properties of the intermittency process σ. Notably the processes Y are in general not of the semimartingale kind and the established theory of multipower variation for semimartingales does not suffice for deriving the limit properties. As a key tool for the results, a general central limit theorem for triangular Gaussian schemes is formulated and proved. Examples and an application to the realised variance ratio are given. | ||
| 650 | 4 | |a central limit theorem | |
| 650 | 4 | |a Gaussian processes | |
| 650 | 4 | |a intermittency | |
| 650 | 4 | |a non-semimartingales | |
| 650 | 4 | |a turbulence | |
| 650 | 4 | |a volatility | |
| 650 | 4 | |a Wiener chaos | |
| 700 | 1 | |a Corcuera, José Manuel |e VerfasserIn |0 (DE-627)1467993964 |0 (DE-576)39799396X |4 aut | |
| 700 | 1 | |a Podolskij, Mark |d 1979- |e VerfasserIn |0 (DE-588)131883909 |0 (DE-627)51596252X |0 (DE-576)298814277 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Bernoulli |d Aarhus : [Verlag nicht ermittelbar], 1995 |g 17(2011), 4, Seite 1159-1194 |h Online-Ressource |w (DE-627)327395354 |w (DE-600)2044340-7 |w (DE-576)10266952X |x 1573-9759 |7 nnas |a Multipower variation for Brownian semistationary processes |
| 773 | 1 | 8 | |g volume:17 |g year:2011 |g number:4 |g pages:1159-1194 |g extent:36 |a Multipower variation for Brownian semistationary processes |
| 856 | 4 | 0 | |u http://dx.doi.org/10.3150/10-BEJ316 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://projecteuclid.org/euclid.bj/1320417500 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180529 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 131883909 |a Podolskij, Mark |m 131883909:Podolskij, Mark |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PP131883909 |e 110200PP131883909 |e 110000PP131883909 |e 110400PP131883909 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 3 |y j | ||
| 999 | |a KXP-PPN1575818256 |e 3010632770 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1575818256","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 29.05.2018"],"person":[{"roleDisplay":"VerfasserIn","display":"Barndorff-Nielsen, Ole E.","role":"aut","family":"Barndorff-Nielsen","given":"Ole E."},{"family":"Corcuera","given":"José Manuel","roleDisplay":"VerfasserIn","display":"Corcuera, José Manuel","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Podolskij, Mark","role":"aut","family":"Podolskij","given":"Mark"}],"title":[{"title_sort":"Multipower variation for Brownian semistationary processes","title":"Multipower variation for Brownian semistationary processes"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Multipower variation for Brownian semistationary processesBernoulli","note":["Gesehen am 30.05.2023"],"corporate":[{"display":"Bernoulli Society for Mathematical Statistics and Probability","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"recId":"327395354","pubHistory":["1.1995 -"],"part":{"extent":"36","volume":"17","text":"17(2011), 4, Seite 1159-1194","pages":"1159-1194","issue":"4","year":"2011"},"title":[{"title":"Bernoulli","subtitle":"official journal of the Bernoulli Society for Mathematical Statistics and Probability","title_sort":"Bernoulli"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Aarhus","dateIssuedDisp":"1995-","dateIssuedKey":"1995","publisher":"[Verlag nicht ermittelbar]"}],"id":{"issn":["1573-9759"],"eki":["327395354"],"zdb":["2044340-7"]}}],"physDesc":[{"extent":"36 S."}],"name":{"displayForm":["Ole E. Barndorff-Nielsen, José Manuel Corcuera and Mark Podolskij"]},"id":{"doi":["10.3150/10-BEJ316"],"eki":["1575818256"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"4 November 2011"}]} | ||
| SRT | |a BARNDORFFNMULTIPOWER4201 | ||