Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals
Integer valued autoregressive processes of order 1 (or INAR(1) processes) that may be interpreted as discrete timeG/Geom/∞ queue length processes are considered. The arrivals are assumed to be compound Poisson distributed. It is shown that then the stationary distribution of the queue length process...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 Jul 2015
|
| In: |
Stochastic models
Year: 2015, Jahrgang: 31, Heft: 4, Pages: 618-635 |
| ISSN: | 1532-4214 |
| DOI: | 10.1080/15326349.2015.1060862 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1080/15326349.2015.1060862 |
| Verfasserangaben: | Sebastian Schweer and Cornelia Wichelhaus |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1575863898 | ||
| 003 | DE-627 | ||
| 005 | 20220814151958.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180530s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/15326349.2015.1060862 |2 doi | |
| 035 | |a (DE-627)1575863898 | ||
| 035 | |a (DE-576)505863898 | ||
| 035 | |a (DE-599)BSZ505863898 | ||
| 035 | |a (OCoLC)1341010260 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Schweer, Sebastian |e VerfasserIn |0 (DE-588)1074381882 |0 (DE-627)832330604 |0 (DE-576)442638493 |4 aut | |
| 245 | 1 | 0 | |a Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals |c Sebastian Schweer and Cornelia Wichelhaus |
| 264 | 1 | |c 30 Jul 2015 | |
| 300 | |a 18 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.05.2018 | ||
| 520 | |a Integer valued autoregressive processes of order 1 (or INAR(1) processes) that may be interpreted as discrete timeG/Geom/∞ queue length processes are considered. The arrivals are assumed to be compound Poisson distributed. It is shown that then the stationary distribution of the queue length process as well as the distribution of the departures from the system are again members of the class of compound Poisson distributions. This reveals remarkable invariance properties of the model. The derived explicit expressions allow for the calculation of important performance measures. It is further shown that time-reversibility of the queue length process as well as an analogue of Burke’s theorem hold only if the arrival process is Poisson. | ||
| 650 | 4 | |a 60J10 | |
| 650 | 4 | |a 60K25. | |
| 650 | 4 | |a 90B22 | |
| 650 | 4 | |a AUTOREGRESSIVE processes | |
| 650 | 4 | |a Burke's Theorem | |
| 650 | 4 | |a Compound Poisson Distribution | |
| 650 | 4 | |a Discrete Time Queueing Model | |
| 650 | 4 | |a DISCRETE-time systems | |
| 650 | 4 | |a INAR(1) Processes | |
| 650 | 4 | |a INTEGERS | |
| 650 | 4 | |a POISSON distribution | |
| 650 | 4 | |a QUEUING theory | |
| 650 | 4 | |a Time Reversibility. | |
| 700 | 1 | |a Wichelhaus, Cornelia |d 1977- |e VerfasserIn |0 (DE-588)132242303 |0 (DE-627)519555309 |0 (DE-576)299026507 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Stochastic models |d London : Taylor & Francis, 2001 |g 31(2015), 4, Seite 618-635 |h Online-Ressource |w (DE-627)270131094 |w (DE-600)1476867-7 |w (DE-576)116330864 |x 1532-4214 |7 nnas |a Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals |
| 773 | 1 | 8 | |g volume:31 |g year:2015 |g number:4 |g pages:618-635 |g extent:18 |a Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1080/15326349.2015.1060862 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180530 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 132242303 |a Wichelhaus, Cornelia |m 132242303:Wichelhaus, Cornelia |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PW132242303 |e 110200PW132242303 |e 110000PW132242303 |e 110400PW132242303 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 998 | |g 1074381882 |a Schweer, Sebastian |m 1074381882:Schweer, Sebastian |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PS1074381882 |e 110200PS1074381882 |e 110000PS1074381882 |e 110400PS1074381882 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1575863898 |e 3010831552 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals","title_sort":"Queueing Systems of INAR(1) Processes with Compound Poisson Arrivals"}],"person":[{"role":"aut","display":"Schweer, Sebastian","roleDisplay":"VerfasserIn","given":"Sebastian","family":"Schweer"},{"roleDisplay":"VerfasserIn","display":"Wichelhaus, Cornelia","role":"aut","family":"Wichelhaus","given":"Cornelia"}],"note":["Gesehen am 30.05.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1575863898","origin":[{"dateIssuedDisp":"30 Jul 2015","dateIssuedKey":"2015"}],"id":{"eki":["1575863898"],"doi":["10.1080/15326349.2015.1060862"]},"name":{"displayForm":["Sebastian Schweer and Cornelia Wichelhaus"]},"physDesc":[{"extent":"18 S."}],"relHost":[{"note":["Gesehen am 06.11.24"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Queueing Systems of INAR(1) Processes with Compound Poisson ArrivalsStochastic models","recId":"270131094","language":["eng"],"pubHistory":["Volume 17, issue 1 (2001)-"],"part":{"text":"31(2015), 4, Seite 618-635","volume":"31","extent":"18","year":"2015","pages":"618-635","issue":"4"},"title":[{"title_sort":"Stochastic models","title":"Stochastic models","subtitle":"affiliated publication of the Institute for Operations Research and the Management Sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2001-","dateIssuedKey":"2001","publisher":"Taylor & Francis ; Dekker","publisherPlace":"London ; New York, NY"}],"id":{"issn":["1532-4214"],"zdb":["1476867-7"],"eki":["270131094"]}}]} | ||
| SRT | |a SCHWEERSEBQUEUEINGSY3020 | ||