Conditional variance estimation in regression models with long memory

In this article we study asymptotic properties of a non-parametric kernel estimator of the conditional variance in a random design model with parametric mean and heteroscedastic errors, for a class of long-memory errors and predictors. We establish small and large bandwidths asymptotics, which show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kulik, Rafal (VerfasserIn) , Wichelhaus, Cornelia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 March 2012
In: Journal of time series analysis
Year: 2012, Jahrgang: 33, Heft: 3, Pages: 468-483
ISSN:1467-9892
DOI:10.1111/j.1467-9892.2012.00782.x
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1111/j.1467-9892.2012.00782.x
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.2012.00782.x
Volltext
Verfasserangaben:Rafal Kulik and Cornelia Wichelhaus
Beschreibung
Zusammenfassung:In this article we study asymptotic properties of a non-parametric kernel estimator of the conditional variance in a random design model with parametric mean and heteroscedastic errors, for a class of long-memory errors and predictors. We establish small and large bandwidths asymptotics, which show a different behaviour compared with that of kernel estimators of the conditional mean. We distinguish between an oracle case (i.e. where the errors are directly observed) and a non-oracle case (where the errors are replaced with residuals) and show non-equivalence between the oracle and non-oracle case. We also discuss a practical problem of bandwidth choice. Theoretical results are justified by simulation studies. We apply our theory to DJA and FTSE indices.
Beschreibung:Gesehen am 30.05.2018
Beschreibung:Online Resource
ISSN:1467-9892
DOI:10.1111/j.1467-9892.2012.00782.x