Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors

This paper considers nonparametric regression models with long memory errors and predictors. Unlike in weak dependence situations, we show that the estimation of the conditional mean has influence on the estimation of both, the conditional variance and the error density. In particular, the estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kulik, Rafal (VerfasserIn) , Wichelhaus, Cornelia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 August 2011
In: Electronic journal of statistics
Year: 2011, Jahrgang: 5, Pages: 856-898
ISSN:1935-7524
DOI:10.1214/11-EJS629
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1214/11-EJS629
Verlag, kostenfrei, Volltext: https://projecteuclid.org/euclid.ejs/1314018118
Volltext
Verfasserangaben:Rafał Kulik and Cornelia Wichelhaus

MARC

LEADER 00000caa a2200000 c 4500
001 1575864959
003 DE-627
005 20220814152029.0
007 cr uuu---uuuuu
008 180530s2011 xx |||||o 00| ||eng c
024 7 |a 10.1214/11-EJS629  |2 doi 
035 |a (DE-627)1575864959 
035 |a (DE-576)505864959 
035 |a (DE-599)BSZ505864959 
035 |a (OCoLC)1341010278 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kulik, Rafal  |e VerfasserIn  |0 (DE-588)1160336709  |0 (DE-627)102349454X  |0 (DE-576)505866013  |4 aut 
245 1 0 |a Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors  |c Rafał Kulik and Cornelia Wichelhaus 
264 1 |c 22 August 2011 
300 |a 43 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.05.2018 
520 |a This paper considers nonparametric regression models with long memory errors and predictors. Unlike in weak dependence situations, we show that the estimation of the conditional mean has influence on the estimation of both, the conditional variance and the error density. In particular, the estimation of the conditional mean has a negative effect on the asymptotic behaviour of the conditional variance estimator. On the other hand, surprisingly, estimation of the conditional mean may reduce convergence rates of the residual-based Parzen-Rosenblatt density estimator, as compared to the errors-based one. Our asymptotic results reveal small/large bandwidth dichotomous behaviour. In particular, we present a method which guarantees that a chosen bandwidth implies standard weakly dependent-type asymptotics. Our results are confirmed by an extensive simulation study. Furthermore, our theoretical lemmas may be used in different problems related to nonparametric regression with long memory, like cross-validation properties, bootstrap, goodness-of-fit or quadratic forms. 
650 4 |a conditional variance 
650 4 |a density estimation 
650 4 |a long memory 
650 4 |a nonparametric regression 
650 4 |a random design 
700 1 |a Wichelhaus, Cornelia  |d 1977-  |e VerfasserIn  |0 (DE-588)132242303  |0 (DE-627)519555309  |0 (DE-576)299026507  |4 aut 
773 0 8 |i Enthalten in  |t Electronic journal of statistics  |d Ithaca, NY : Cornell University Library, 2007  |g 5(2011), Seite 856-898  |h Online-Ressource  |w (DE-627)538998830  |w (DE-600)2381001-4  |w (DE-576)28134714X  |x 1935-7524  |7 nnas  |a Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors 
773 1 8 |g volume:5  |g year:2011  |g pages:856-898  |g extent:43  |a Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors 
856 4 0 |u http://dx.doi.org/10.1214/11-EJS629  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://projecteuclid.org/euclid.ejs/1314018118  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180530 
993 |a Article 
994 |a 2011 
998 |g 132242303  |a Wichelhaus, Cornelia  |m 132242303:Wichelhaus, Cornelia  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PW132242303  |e 110200PW132242303  |e 110000PW132242303  |e 110400PW132242303  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1575864959  |e 3010833032 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY","publisher":"Cornell University Library","dateIssuedKey":"2007","dateIssuedDisp":"2007-"}],"id":{"eki":["538998830"],"zdb":["2381001-4"],"issn":["1935-7524"]},"pubHistory":["1.2007 -"],"titleAlt":[{"title":"EJS"}],"part":{"volume":"5","text":"5(2011), Seite 856-898","extent":"43","year":"2011","pages":"856-898"},"disp":"Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictorsElectronic journal of statistics","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"538998830","language":["eng"],"title":[{"subtitle":"EJS","title":"Electronic journal of statistics","title_sort":"Electronic journal of statistics"}]}],"physDesc":[{"extent":"43 S."}],"name":{"displayForm":["Rafał Kulik and Cornelia Wichelhaus"]},"id":{"eki":["1575864959"],"doi":["10.1214/11-EJS629"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"22 August 2011"}],"recId":"1575864959","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 30.05.2018"],"person":[{"role":"aut","display":"Kulik, Rafal","roleDisplay":"VerfasserIn","given":"Rafal","family":"Kulik"},{"given":"Cornelia","family":"Wichelhaus","role":"aut","display":"Wichelhaus, Cornelia","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors","title":"Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors"}]} 
SRT |a KULIKRAFALNONPARAMET2220