A contribution to Segal algebras

Let A and B be Banach algebras. If B is an abstract Segal algebra in A, we have a bijective correspondence between the strictly irreducible representations of A and those of B. This gives a bijective correspondence for maximal modular left ideals. If A and B have approximate right units, we obtain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leinert, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1973
In: Manuscripta mathematica
Year: 1973, Jahrgang: 10, Heft: 3, Pages: 297-306
ISSN:1432-1785
DOI:10.1007/BF01332771
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/BF01332771
Verlag, Volltext: https://link.springer.com/article/10.1007/BF01332771
Volltext
Verfasserangaben:Michael Leinert

MARC

LEADER 00000caa a2200000 c 4500
001 1575953943
003 DE-627
005 20220814152836.0
007 cr uuu---uuuuu
008 180604s1973 xx |||||o 00| ||eng c
024 7 |a 10.1007/BF01332771  |2 doi 
035 |a (DE-627)1575953943 
035 |a (DE-576)505953943 
035 |a (DE-599)BSZ505953943 
035 |a (OCoLC)1341010534 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Leinert, Michael  |e VerfasserIn  |0 (DE-588)1065488696  |0 (DE-627)816189153  |0 (DE-576)425236153  |4 aut 
245 1 2 |a A contribution to Segal algebras  |c Michael Leinert 
264 1 |c 1973 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.06.2018 
520 |a Let A and B be Banach algebras. If B is an abstract Segal algebra in A, we have a bijective correspondence between the strictly irreducible representations of A and those of B. This gives a bijective correspondence for maximal modular left ideals. If A and B have approximate right units, we obtain a bijective correspondence for right resp. Two-sided ideals. For two-sided ideals this correspondence preserves the property of an ideal having approximate right units. This generalizes a theorem by H. Reiter. 
773 0 8 |i Enthalten in  |t Manuscripta mathematica  |d Berlin : Springer, 1969  |g 10(1973), 3, Seite 297-306  |h Online-Ressource  |w (DE-627)253770637  |w (DE-600)1459409-2  |w (DE-576)072578661  |x 1432-1785  |7 nnas  |a A contribution to Segal algebras 
773 1 8 |g volume:10  |g year:1973  |g number:3  |g pages:297-306  |g extent:10  |a A contribution to Segal algebras 
856 4 0 |u http://dx.doi.org/10.1007/BF01332771  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/BF01332771  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180604 
993 |a Article 
994 |a 1973 
998 |g 1065488696  |a Leinert, Michael  |m 1065488696:Leinert, Michael  |p 1  |x j  |y j 
999 |a KXP-PPN1575953943  |e 3011457794 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"10 S."}],"relHost":[{"recId":"253770637","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.12.05"],"disp":"A contribution to Segal algebrasManuscripta mathematica","part":{"extent":"10","text":"10(1973), 3, Seite 297-306","volume":"10","pages":"297-306","issue":"3","year":"1973"},"pubHistory":["1.1969 -"],"title":[{"title_sort":"Manuscripta mathematica","title":"Manuscripta mathematica"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["253770637"],"zdb":["1459409-2"],"issn":["1432-1785"]},"origin":[{"dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisher":"Springer","publisherPlace":"Berlin ; Heidelberg"}]}],"origin":[{"dateIssuedDisp":"1973","dateIssuedKey":"1973"}],"id":{"eki":["1575953943"],"doi":["10.1007/BF01332771"]},"name":{"displayForm":["Michael Leinert"]},"note":["Gesehen am 04.06.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1575953943","title":[{"title":"A contribution to Segal algebras","title_sort":"contribution to Segal algebras"}],"person":[{"role":"aut","display":"Leinert, Michael","roleDisplay":"VerfasserIn","given":"Michael","family":"Leinert"}]} 
SRT |a LEINERTMICCONTRIBUTI1973